Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

The area enclosed by the curves y=sinx+cosxy = sin\, x + cos \,x and y=cosxsinxy\, =\, | cos\, x - sin\, x | over the interval [0,π2]\Bigg [0 , \frac{\pi}{2} \Bigg] is

A

4(21)4(\sqrt2 - 1)

B

22(21)2\sqrt2(\sqrt2 - 1)

C

2(2+1)2(\sqrt2 + 1)

D

22(2+1)2\sqrt2(\sqrt2 + 1)

Answer

22(21)2\sqrt2(\sqrt2 - 1)

Explanation

Solution

To find the bounded area between y = f(x) and y = g(x)
between x= a to x = b.
Areabounded=ac[g(x)f(x)]dx+cb[f(x)g(x)]dx\therefore Area bounded = \int \limits_a^c [g(x) - f(x)] dx + \int \limits_c^b [f(x) - g(x)] dx
      =abf(x)g(x)dx\ \ \ \ \ \ = \int \limits_a^b |f(x) - g(x)| dx
and         g(x)=y=cosxsinx\ \ \ \ \ \ \ \ g(x) = y = |cos x - sin x|
Here,       f(x)=y=sinx+cosx,when\0xπ2\ \ \ \ \ \ f(x) = y = sin x + cos x , when\\\0 \le x \le \frac{\pi}{2}
\bigg \\{ \begin{array} \ cos x - sin x, 0 \le x \le \frac{\pi}{4} \\\ sin x - cos x, \frac{\pi}{4} \le x \le \frac{\pi}{2} \\\ \end{array}
could be shown as
Area bounded=0π/4(sinx+cosx)(cosxsinnx)dx\therefore Area \ bounded = \int \limits_0^{\pi/4} {(sin x + cos x) - (cos x - sinn x)} dx
     +π/4π/2(sinx+cosx)(sinxcosx)dx\ \ \ \ \ + \int \limits_{\pi/4}^{\pi/2} {(sin x + cos x) - (sin x - cos x)} dx
       =0π/42sinxdx+π/4π/22cosxdx\ \ \ \ \ \ \ = \int \limits_0^{\pi/4} 2 sin x dx + \int \limits_{\pi/4}^{\pi/2} 2 cos x dx
=2[cosx]0π/4+2[sinx.n]π/4π/2= -2 [cos x]_0^{\pi/4} + 2[sin x. n]_{\pi/4}^{\pi/2}
422=22(21)4 - 2 \sqrt2 = 2 \sqrt2 (\sqrt2 - 1) sq units