Question
Mathematics Question on Area under Simple Curves
The area enclosed by the curves y=sinx+cosx and y=∣cosx−sinx∣ over the interval [0,2π] is
A
4(2−1)
B
22(2−1)
C
2(2+1)
D
22(2+1)
Answer
22(2−1)
Explanation
Solution
To find the bounded area between y = f(x) and y = g(x)
between x= a to x = b.
∴Areabounded=a∫c[g(x)−f(x)]dx+c∫b[f(x)−g(x)]dx
=a∫b∣f(x)−g(x)∣dx
and g(x)=y=∣cosx−sinx∣
Here, f(x)=y=sinx+cosx,when\0≤x≤2π
\bigg \\{ \begin{array}
\ cos x - sin x, 0 \le x \le \frac{\pi}{4} \\\
sin x - cos x, \frac{\pi}{4} \le x \le \frac{\pi}{2} \\\
\end{array}
could be shown as
∴Area bounded=0∫π/4(sinx+cosx)−(cosx−sinnx)dx
+π/4∫π/2(sinx+cosx)−(sinx−cosx)dx
=0∫π/42sinxdx+π/4∫π/22cosxdx
=−2[cosx]0π/4+2[sinx.n]π/4π/2
4−22=22(2−1) sq units