Solveeit Logo

Question

Question: The area enclosed by the curves x<sup>2</sup> = y, y = x + 2 and x-axis is –...

The area enclosed by the curves x2 = y, y = x + 2 and x-axis is –

A

56\frac { 5 } { 6 }

B

54\frac { 5 } { 4 }

C

52\frac { 5 } { 2 }

D

None of these

Answer

56\frac { 5 } { 6 }

Explanation

Solution

Intersection of x2 = y and y = x + 2 is x2 = x + 2

̃ x2 – x – 2 = 0 ̃ (x – 2) (x + 1) = 0

̃x = – 1, x = 2 ̃ y = 1, y = 4

̃ A (–1, 1), B(2, 4)

Required area = A = (A1 + A2),

where A1 = Area of

DABC =12\frac { 1 } { 2 }AC × BC =12\frac { 1 } { 2 } (1) (1) =12\frac { 1 } { 2 }

as OB = –2, CO = –1,

Area = A2 = 10ydx\left| \int _ { - 1 } ^ { 0 } y d x \right| = 10x2dx\left| \int _ { - 1 } ^ { 0 } x ^ { 2 } d x \right| = 13\frac { 1 } { 3 }

By (1), A = 12\frac { 1 } { 2 } + 13\frac { 1 } { 3 } = 56\frac { 5 } { 6 }