Solveeit Logo

Question

Question: The area enclosed by the curves \(x=a{{\cos }^{3}}t,\text{ }y=b{{\sin }^{3}}t\) is A. \(\dfrac{\pi...

The area enclosed by the curves x=acos3t, y=bsin3tx=a{{\cos }^{3}}t,\text{ }y=b{{\sin }^{3}}t is
A. πab4\dfrac{\pi ab}{4}
B. 3πab4\dfrac{3\pi ab}{4}
C. 3πab8\dfrac{3\pi ab}{8}
D. None of these

Explanation

Solution

We know that the area bounded by a curve is given by the formula
Area=12t1t2(xdydtydxdt)dtArea=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( x\dfrac{dy}{dt}-y\dfrac{dx}{dt} \right)dt}
Now, consider x=acos3tx=a{{\cos }^{3}}t and y=bsin3ty=b{{\sin }^{3}}t separately and differentiate both equations with respect to tt. Then, put the values in the formula and integrate using the formula 0π2sinmt.cosnt=(m1)(m3)...1(n1)(n3)...1(m+n)(m+n2)...1×π2\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}t}.{{\cos }^{n}}t=\dfrac{\left( m-1 \right)\left( m-3 \right)...1\cdot \left( n-1 \right)\left( n-3 \right)...1}{\left( m+n \right)\left( m+n-2 \right)...1}\times \dfrac{\pi }{2} with even m,nm,n to obtain the desired result.

Complete step-by-step answer :
We have given equations x=acos3tx=a{{\cos }^{3}}t and y=bsin3ty=b{{\sin }^{3}}t
Now, first we will find dydt\dfrac{dy}{dt} and dxdt\dfrac{dx}{dt}.
x=acos3tx=a{{\cos }^{3}}t
Now, differentiate the equation with respect to tt, we get
dxdt=ddt(acos3t)\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a{{\cos }^{3}}t \right)
Taking out the constant term, we get
dxdt=addt(cos3t)\Rightarrow \dfrac{dx}{dt}=a\dfrac{d}{dt}\left( {{\cos }^{3}}t \right)
dxdt=a3cos2tddt(cost)\Rightarrow \dfrac{dx}{dt}=a3{{\cos }^{2}}t\dfrac{d}{dt}\left( \cos t \right)
Now, we know that derivative of cost=sint\cos t=-\sin t
So, when we solve further, we get

& \Rightarrow \dfrac{dx}{dt}=a3{{\cos }^{2}}t\left( -\sin t \right) \\\ & \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t \\\ \end{aligned}$$ Now, we will solve the equation $y=b{{\sin }^{3}}t$ Differentiating the equation with respect to $t$, we get $\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( b{{\sin }^{3}}t \right)$ Taking out the constant term, we get $\begin{aligned} & \Rightarrow \dfrac{dy}{dt}=b\dfrac{d}{dt}\left( {{\sin }^{3}}t \right) \\\ & \Rightarrow \dfrac{dy}{dt}=b3{{\sin }^{2}}t\dfrac{d}{dt}\left( \sin t \right) \\\ \end{aligned}$ Now, we know that derivative of $\sin t=\cos t$ So, when we solve further, we get $\begin{aligned} & \Rightarrow \dfrac{dy}{dt}=b3{{\sin }^{2}}t\left( \cos t \right) \\\ & \Rightarrow \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t \\\ \end{aligned}$ Now, we will find the value of $$x\dfrac{dy}{dt}-y\dfrac{dx}{dt}$$ $$\begin{aligned} & \Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=a{{\cos }^{3}}t\left( 3b{{\sin }^{2}}t\cos t \right)-b{{\sin }^{3}}t\left( -3a{{\cos }^{2}}t\sin t \right) \\\ & \Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{4}}t{{\sin }^{2}}t+3ab{{\cos }^{2}}t{{\sin }^{4}}t \\\ \end{aligned}$$ Now, taking common terms out we get $$\Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{2}}t{{\sin }^{2}}t\left( {{\cos }^{2}}t+{{\sin }^{2}}t \right)$$ We know that $${{\cos }^{2}}x+{{\sin }^{2}}x=1$$ So, we get $$\Rightarrow x\dfrac{dy}{dt}-y\dfrac{dx}{dt}=3ab{{\cos }^{2}}t{{\sin }^{2}}t$$ Now, the required area will be $$Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( x\dfrac{dy}{dt}-y\dfrac{dx}{dt} \right)dt}$$ Put the values in the formula, we get $$Area=\dfrac{1}{2}\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( 3ab{{\cos }^{2}}t{{\sin }^{2}}t \right)dt}$$ Now, to obtain a closed curve the value of $t$ varies from $0$ to $2\pi $ ![](https://www.vedantu.com/question-sets/878c6206-6b10-4646-a384-52f1a0c65d484503447056547410610.png) $$Area=\dfrac{1}{2}\int\limits_{0}^{2\pi }{\left( 3ab{{\cos }^{2}}t{{\sin }^{2}}t \right)dt}$$ Taking out the constant term, we get $$Area=\dfrac{3ab}{2}\int\limits_{0}^{2\pi }{\left( {{\cos }^{2}}t{{\sin }^{2}}t \right)dt}$$ We can split the limits of integral into 4 equal parts with limits $$\left[ 0,\dfrac{\pi }{2} \right],\left[ \dfrac{\pi }{2},\pi \right],\left[ \pi ,\dfrac{3\pi }{2} \right],\left[ \dfrac{3\pi }{2},2\pi \right]$$ which enclose equal area traced in the first, second, third and fourth quadrant respectively. So we have, $$Area=\dfrac{3ab}{2}\times 4\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\cos }^{2}}t{{\sin }^{2}}t \right)dt}$$ Now, we know that integration formula that $$\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}t}.{{\cos }^{n}}t=\left\\{ \begin{matrix} \dfrac{\left( m-1 \right)\left( m-3 \right)...1\cdot \left( n-1 \right)\left( n-3 \right)...1}{\left( m+n \right)\left( m+n-2 \right)...1}\times \dfrac{\pi }{2} & \text{if }m,n\text{ even} \\\ \dfrac{\left( m-1 \right)\left( m-3 \right)....\left( 2\text{ or 1} \right)\left( n-1 \right)\left( n-3 \right)...\left( 2\text{ or 1} \right)}{\left( m+n \right)\left( m+n-2 \right)...\left( 2\text{ or 1} \right)} & \text{otherwise} \\\ \end{matrix} \right.$$ We use the formula for the even condition with that is $m=n=2$in this problem. $$\begin{aligned} & Area=\dfrac{3ab}{2}\times 4\times \dfrac{\left( 2-1 \right)\left( 2-1 \right)}{\left( 2+2 \right)\left( 2+2-2 \right)}\times \dfrac{\pi }{2} \\\ & Area=\dfrac{3ab}{2}\times 4\times \dfrac{1\times 1}{4\times 2}\times \dfrac{\pi }{2} \\\ & Area=\dfrac{3ab\pi }{8} \\\ \end{aligned}$$ **So, option C is the correct answer.** **Note** : Definite integral gives the area bounded by a curve. Always consider a closed curve to find the area. The formula $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{m}}x}.{{\cos }^{n}}x=\dfrac{\left( m-1 \right)\left( m-3 \right).........\left( n-1 \right)\left( n-3 \right)...}{\left( m+n \right)\left( m+n-2 \right)...}$ used is known as Wallis’s formula for definite integrals of powers of sine and cosine functions. We can find point of intersection of the curve with axes using $x=a{{\cos }^{3}}t=0,y=b{{\sin }^{3}}t=0$ and obtain the limits of for each quadrant.