Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

The area enclosed by the curves

y=loge(x+e2), x=loge(2y) and x= log e 2,\begin{array}{l} y=\text{log}_e\left(x+e^2\right),\ x=\text{log}_e\left(\frac{2}{y}\right)\text{ and }x=\text{ log }_e\ 2,\end{array}

above the line y = 1 is

A

2 + e - loge 2

B

1+ e - loge2

C

2 + e + loge 2

D

1 - e - loge2

Answer

1+ e - loge2

Explanation

Solution

Area enclosed by curve

The required region A , which is shaded in crossed lines and comes out to be

A=12(In 2yey+e2)dy=1+eIn2\begin{array}{l} A=\displaystyle\int\limits_1^2\left(\text{In }\frac{2}{y}-e^y+e^2\right)dy=1+e-\text{In}2 \end{array}

But according to us the required region A comes out to be shaded in parallel lines, which can be obtained as

A=0In 2(In(x+e2)2ex)dx\begin{array}{l} A=\displaystyle\int\limits_0^{\text{In }2}\left(\text{In}\left(x+e^2\right)-2e^{-x}\right)dx\end{array}

\begin{array}{l} \left. =\left\\{\left(x+e^2\right)\text{In}\left(x+e^2\right)-x+2e^{-x} \right\\} \right|_0^{\text{In }2}\end{array}

=(In2+e2)In(In2+e2)In2+12e22\begin{array}{l} =\left(\text{In}2+e^2\right)\text{In}\left(\text{In2}+e^2\right)-\text{In}2+1-2e^2 – 2\end{array}
=(In2+e2)In(In2e2)In22e21\begin{array}{l} =\left(\text{In}2+e^2\right)\text{In}\left(\text{In}2-e^2\right)-\text{In}2-2e^2-1\end{array}

Not given in any option.

The region asked in the question is bounded by three curves

y=In(x+e2)x=In(2y)x=In2\begin{array}{l} y=\text{In}\left(x+e^2\right)\end{array} \begin{array}{l} x=\text{In}\left(\frac{2}{y}\right) \end{array} \begin{array}{l} x=\text{In}2\end{array}

There is only one region which satisfies above requirement and which also lies above line y = 1

Line y = 1 may or may not be the boundary of the region.