Solveeit Logo

Question

Question: The area enclosed by $C_1$: y = Inx and $C_2$: y = $tan^{-1}$(x - 1) between the vertical lines x = ...

The area enclosed by C1C_1: y = Inx and C2C_2: y = tan1tan^{-1}(x - 1) between the vertical lines x = 1 and x = 2 (in square units) is equal to

Answer

1+π452ln21 + \frac{\pi}{4} - \frac{5}{2} \ln 2

Explanation

Solution

To find the area enclosed by the curves C1C_1: y = ln x and C2C_2: y = tan⁻¹(x - 1) between x = 1 and x = 2, we first need to determine which curve is above the other in the given interval.

  1. Analyze the functions at the boundaries:

    • At x = 1:
      • For C1C_1: y = ln(1) = 0.
      • For C2C_2: y = tan⁻¹(1 - 1) = tan⁻¹(0) = 0. Both curves pass through the point (1, 0).
    • At x = 2:
      • For C1C_1: y = ln(2) ≈ 0.693.
      • For C2C_2: y = tan⁻¹(2 - 1) = tan⁻¹(1) = π/4 ≈ 0.785. Since π/4 > ln(2), at x = 2, C2C_2 is above C1C_1.
  2. Determine which function is greater in the interval (1, 2): Let's consider the function f(x) = tan⁻¹(x - 1) - ln x. We want to find the sign of f(x) for x ∈ (1, 2). We know f(1) = 0. Let's find the derivative f'(x): f(x)=ddx(tan1(x1))ddx(lnx)f'(x) = \frac{d}{dx}(\tan^{-1}(x-1)) - \frac{d}{dx}(\ln x) f(x)=11+(x1)21xf'(x) = \frac{1}{1+(x-1)^2} - \frac{1}{x} f(x)=x(1+(x1)2)x(1+(x1)2)f'(x) = \frac{x - (1+(x-1)^2)}{x(1+(x-1)^2)} f(x)=x(1+x22x+1)x(1+(x1)2)f'(x) = \frac{x - (1+x^2-2x+1)}{x(1+(x-1)^2)} f(x)=xx2+2x2x(1+(x1)2)f'(x) = \frac{x - x^2 + 2x - 2}{x(1+(x-1)^2)} f(x)=x2+3x2x(1+(x1)2)f'(x) = \frac{-x^2 + 3x - 2}{x(1+(x-1)^2)} f(x)=(x23x+2)x(1+(x1)2)f'(x) = \frac{-(x^2 - 3x + 2)}{x(1+(x-1)^2)} f(x)=(x1)(x2)x(1+(x1)2)f'(x) = \frac{-(x-1)(x-2)}{x(1+(x-1)^2)} For x ∈ (1, 2):

    • (x - 1) > 0
    • (x - 2) < 0
    • So, (x - 1)(x - 2) < 0.
    • Therefore, -(x - 1)(x - 2) > 0.
    • The denominator x(1 + (x - 1)²) is positive for x ∈ (1, 2). Thus, f'(x) > 0 for x ∈ (1, 2). Since f(1) = 0 and f(x) is increasing in (1, 2), it implies f(x) > 0 for x ∈ (1, 2). Therefore, tan⁻¹(x - 1) > ln x for x ∈ (1, 2). The area is given by the integral of the upper curve minus the lower curve: Area = 12(tan1(x1)lnx)dx\int_{1}^{2} (\tan^{-1}(x-1) - \ln x) dx Area = 12tan1(x1)dx12lnxdx\int_{1}^{2} \tan^{-1}(x-1) dx - \int_{1}^{2} \ln x dx
  3. Evaluate tan1(x1)dx\int \tan^{-1}(x-1) dx: Let u = x - 1, so du = dx. The integral becomes tan1(u)du\int \tan^{-1}(u) du. Using integration by parts, vdw=vwwdv\int v dw = vw - \int w dv: Let v = tan⁻¹(u) and dw = du. Then dv = 11+u2du\frac{1}{1+u^2} du and w = u. tan1(u)du=utan1(u)u1+u2du\int \tan^{-1}(u) du = u \tan^{-1}(u) - \int \frac{u}{1+u^2} du For the second integral, let t = 1 + u², so dt = 2u du, which means u du = 12dt\frac{1}{2} dt. u1+u2du=12tdt=12lnt=12ln(1+u2)\int \frac{u}{1+u^2} du = \int \frac{1}{2t} dt = \frac{1}{2} \ln|t| = \frac{1}{2} \ln(1+u^2). So, tan1(u)du=utan1(u)12ln(1+u2)\int \tan^{-1}(u) du = u \tan^{-1}(u) - \frac{1}{2} \ln(1+u^2). Substituting back u = x - 1: tan1(x1)dx=(x1)tan1(x1)12ln(1+(x1)2)\int \tan^{-1}(x-1) dx = (x-1) \tan^{-1}(x-1) - \frac{1}{2} \ln(1+(x-1)^2). Evaluating the definite integral from 1 to 2: [(21)tan1(21)12ln(1+(21)2)][(11)tan1(11)12ln(1+(11)2)][ (2-1)\tan^{-1}(2-1) - \frac{1}{2} \ln(1+(2-1)^2) ] - [ (1-1)\tan^{-1}(1-1) - \frac{1}{2} \ln(1+(1-1)^2) ] =[1tan1(1)12ln(1+1)][0tan1(0)12ln(1+0)]= [ 1 \cdot \tan^{-1}(1) - \frac{1}{2} \ln(1+1) ] - [ 0 \cdot \tan^{-1}(0) - \frac{1}{2} \ln(1+0) ] =[π412ln2][00]= [ \frac{\pi}{4} - \frac{1}{2} \ln 2 ] - [ 0 - 0 ] =π412ln2= \frac{\pi}{4} - \frac{1}{2} \ln 2.

  4. Evaluate lnxdx\int \ln x dx: Using integration by parts: Let v = ln x and dw = dx. Then dv = 1xdx\frac{1}{x} dx and w = x. lnxdx=xlnxx1xdx=xlnx1dx=xlnxx\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx = x \ln x - \int 1 dx = x \ln x - x. Evaluating the definite integral from 1 to 2: [2ln22][1ln11][ 2 \ln 2 - 2 ] - [ 1 \ln 1 - 1 ] =[2ln22][01]= [ 2 \ln 2 - 2 ] - [ 0 - 1 ] =2ln22+1= 2 \ln 2 - 2 + 1 =2ln21= 2 \ln 2 - 1.

  5. Calculate the total area: Area = (π412ln2)(2ln21)(\frac{\pi}{4} - \frac{1}{2} \ln 2) - (2 \ln 2 - 1) Area = π412ln22ln2+1\frac{\pi}{4} - \frac{1}{2} \ln 2 - 2 \ln 2 + 1 Area = π4+1(12+2)ln2\frac{\pi}{4} + 1 - (\frac{1}{2} + 2) \ln 2 Area = π4+1(1+42)ln2\frac{\pi}{4} + 1 - (\frac{1+4}{2}) \ln 2 Area = 1+π452ln21 + \frac{\pi}{4} - \frac{5}{2} \ln 2.

The final answer is 1+π452ln2\boxed{1 + \frac{\pi}{4} - \frac{5}{2} \ln 2}.