Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

The area enclosed between the curves y=xxy = x|x| and y=xxy = x - |x| is:

A

83\frac{8}{3}

B

23\frac{2}{3}

C

1

D

43\frac{4}{3}

Answer

43\frac{4}{3}

Explanation

Solution

We calculate the area enclosed by the curves y=xxy = x|x| and y=xxy = x - |x| by analyzing their forms and intersections.

Step 1: Rewrite the curves

1. For y=xxy = x|x|:

y = \begin{cases} x^2 & \text{if } x \geq 0, \\\ -x^2 & \text{if } x < 0\. \end{cases}

This represents a parabola opening upwards in the first quadrant and downwards in the second quadrant.

2. For y=xxy = x - |x|:

y = \begin{cases} 0 & \text{if } x \geq 0, \\\ 2x & \text{if } x < 0\. \end{cases}

This represents the x-axis for x0x \geq 0 and a line with slope 2 for x<0x < 0.

Step 2: Intersection points

In the second quadrant (x<0x < 0), solve for the intersection points by setting:

xx=xx    x2=2x(as x<0, so x=x).x|x| = x - |x| \implies -x^2 = 2x \quad (\text{as } x < 0, \text{ so } |x| = -x).

Factorize:

x(x+2)=0    x=0 or x=2.x(x + 2) = 0 \implies x = 0 \text{ or } x = -2.

Thus, the curves intersect at x=2x = -2 and x=0x = 0.

Step 3: Define the enclosed area

The enclosed area is the integral of the difference between the upper curve y=x2y = -x^2 and the lower curve y=2xy = 2x, over the interval x[2,0]x \in [-2, 0]:

A=20[(x2)(2x)]dx.A = \int_{-2}^0 \left[(-x^2) - (2x)\right] dx.

Simplify:

A=20(x22x)dx.A = \int_{-2}^0 \left(-x^2 - 2x\right) dx.

Step 4: Compute the integral

Evaluate term by term:

x2dx=x33,2xdx=x2.\int -x^2 dx = -\frac{x^3}{3}, \quad \int -2x dx = -x^2.

Thus:

A=[x33]20+[x2]20.A = \left[ -\frac{x^3}{3} \right]_{-2}^0 + \left[ -x^2 \right]_{-2}^0.

Step 5: Evaluate at bounds

1. For [x33]20\left[-\frac{x^3}{3}\right]_{-2}^0:

(033)((2)33)=0+83=83.\left(-\frac{0^3}{3}\right) - \left(-\frac{(-2)^3}{3}\right) = 0 + \frac{-8}{3} = \frac{8}{3}.

2. For [x2]20\left[-x^2\right]_{-2}^0:

(02)+((2)2)=04=4.-(0^2) + (-(-2)^2) = 0 - 4 = -4.

Combine these:

A=834.A = \frac{8}{3} - 4.

Simplify:

A=83123=43.A = \frac{8}{3} - \frac{12}{3} = \frac{4}{3}.

Final Answer: The enclosed area is:

43\boxed{\frac{4}{3}}