Solveeit Logo

Question

Question: The area bounded by y = x e<sup>\| x \|</sup> and the lines \| x \| = 1, y = 0 is –...

The area bounded by y = x e| x | and the lines | x | = 1, y = 0 is –

A

4

B

6

C

1

D

2

Answer

2

Explanation

Solution

Since | x | = 1, x = ± 1

\ y = x e| x | = {xex,1<x<0xex,0x<1 \left\{ \begin{matrix} xe^{- x}, & - 1 < x < 0 \\ xe^{x}, & 0 \leq x < 1 \end{matrix} \right.\

\ Required area = 10xexdx\left| \int_{–1}^{0}{xe^{- x}dx} \right| + 01xexdx\left| \int_{0}^{1}{xe^{x}dx} \right|

= [xexex]10\left| \left\lbrack - xe^{- x} - e^{- x} \right\rbrack_{–1}^{0} \right| + [xexex]01\left| \left\lbrack xe^{x} - e^{x} \right\rbrack_{0}^{1} \right|

= | –1 – e + e| + |e – e – 0 + 1| = 2 sq. units.