Solveeit Logo

Question

Mathematics Question on applications of integrals

The area bounded by y=x2+3y =x^{2} +3 and y=2x+3y =2x+3 is

A

127\frac{12}{7}

B

43\frac{4}{3}

C

34\frac{3}{4}

D

83\frac{8}{3}

Answer

43\frac{4}{3}

Explanation

Solution

Required area
=02(2x+3)(x2+3)dx=\int_{0}^{2}(2 x+3)-\left(x^{2}+3\right) d x

=02(2xx2)dx=\int_{0}^{2}\left(2 x-x^{2}\right) d x
=[2x22x33]02=\left[\frac{2 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}
=[483]=43=\left[4-\frac{8}{3}\right]=\frac{4}{3} sq units