Question
Mathematics Question on applications of integrals
The area bounded by the y−axis,y=cosx and y=sinx when 0≤x≤2π
2(2−1)
2−1
2+1
2
2−1
Solution
The correct answer is B:2−1
The given equations are
y=cosx...(1)
And,y=sinx...(2)
Required area=Area(ABLA)+area(OBLO)
=∫211xdy+∫021xdy
=∫211cos−1ydy+∫021sin−1xdy
Integrating by parts,we obtain
=[ycos−1y−1−y2]211+[xsin−1x+1−x2]021
=[cos−1(1)−21cos−1(21)+1−21]+[21sin−1(21)+1−21−1]
=42−π+21+42π+21−1
=22−1
=2−1units
Thus,the correct answer is B.
Put 2x=t⇒dx=2dt
When x=23,t=3 and when x=21,t=1
=∫0212xdx+41∫13(3)2−(t)2dt
=2[23x23]021+41[2t9−t2+29sin−1(3t)]13
=2[32(21)23]+41[239−(3)2+29sin−1(33)]−[219−(1)2+29sin−1(31)]
=322+41[0+29sin−1(1)−218+29sin−1(31)]
=32+169π−42−89sin−1(31)
=169π−89sin−1(31)+122
Therefore,the required area is[2×(169π−89sin−1(31)+122)]=89π−49sin−1(31)+321units