Solveeit Logo

Question

Question: The area bounded by the x-axis, the curve y = f(x) and the lines x = 1, x = b is equal to \(\sqrt { ...

The area bounded by the x-axis, the curve y = f(x) and the lines x = 1, x = b is equal to b2+12\sqrt { b ^ { 2 } + 1 } - \sqrt { 2 } for all b>1b > 1then f(x) is

A

x1\sqrt { x - 1 }

B

x+1\sqrt { x + 1 }

C

x21\sqrt { x ^ { 2 } - 1 }

D

x1+x2\frac { x } { \sqrt { 1 + x ^ { 2 } } }

Answer

x1+x2\frac { x } { \sqrt { 1 + x ^ { 2 } } }

Explanation

Solution

1bf(x)dx=b2+12=[x2+1]1b\int _ { 1 } ^ { b } f ( x ) d x = \sqrt { b ^ { 2 } + 1 } - \sqrt { 2 } = \left[ \sqrt { x ^ { 2 } + 1 } \right] _ { 1 } ^ { b }

f(x)=122xx2+1f ( x ) = \frac { 1 } { 2 } \cdot \frac { 2 x } { \sqrt { x ^ { 2 } + 1 } }

Hence f(x)=x1+x2f ( x ) = \frac { x } { \sqrt { 1 + x ^ { 2 } } }.