Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

The area bounded by the parabola y2=4xy^2 = 4x and the line 2x3y+4=02x - 3y + 4 = 0, in square unit, is

A

25\frac{2}{5}

B

13\frac{1}{3}

C

1

D

12\frac{1}{2}

Answer

13\frac{1}{3}

Explanation

Solution

Intersecting points are x = 1, 4 \therefore Required area =14[2x(2x+43)]dx= \int\limits^{4}_{1} \left[2 \sqrt{x} - \left(\frac{2x+4}{3}\right)\right]dx =2x3232142x23×21443x14= \frac{2x ^{\frac{3}{2}}}{\frac{3}{2}} \Bigg|^{4}_{1} - \frac{2x^{2}}{3 \times2} \Bigg|^{4}_{1} - \frac{4}{3} x \bigg|^{4}_{1} =43(432132)13(161)[43(4)43]= \frac{4}{3}\left(4^{\frac{3}{2}} - 1^{\frac{3}{2}}\right) - \frac{1}{3} \left(16-1\right) - \left[\frac{4}{3} \left(4\right) - \frac{4}{3}\right] =43(7)54=2839=28273=13= \frac{4}{3}\left(7\right) - 5-4 = \frac{28}{3} - 9 = \frac{28-27}{3} = \frac{1}{3}