Solveeit Logo

Question

Mathematics Question on applications of integrals

The area bounded by the curves y=x2+3y = - x^2 + 3 and y=0y = 0 is

A

3+1\sqrt{3} + 1

B

3\sqrt{3}

C

434 \sqrt{3}

D

535 \sqrt{3}

Answer

434 \sqrt{3}

Explanation

Solution

We have,
y=x2+3y =-x^{2}+3
x2=(y3)\Rightarrow x^{2} =-(y-3)
The above curve intersect XX -axis at the points where y=0y=0
x2=3\therefore x^{2}=3
x=±3\Rightarrow x=\pm \sqrt{3}

\therefore Point of intersection with XX -axis are (±3,0)(\pm \sqrt{3}, 0).
\therefore Required area =203ydx=2 \int\limits_{0}^{\sqrt{3}} y\, d x
=203(x2+3)dx=2 \int\limits_{0}^{\sqrt{3}}\left(-x^{2}+3\right) d x
=2[x33+3x]03=2\left[\frac{-x^{3}}{3}+3 x\right]_{0}^{\sqrt{3}}
=2[333+33]=2\left[\frac{-3 \sqrt{3}}{3}+3 \sqrt{3}\right]
=2[3+33]=2[-\sqrt{3}+3 \sqrt{3}]
=43=4 \sqrt{3} sq units