Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The area bounded by the curves y=cosxy = cos\, x and y=sinxy = sin \,x between the ordinates x=0x = 0 and x=3π2x = \frac{3\pi}{2} is

A

(422)\left(4\sqrt{2}-2\right) sq units

B

(42+2)\left(4\sqrt{2}+2\right) sq units

C

(421)\left(4\sqrt{2}-1\right) sq units

D

(42+1)\left(4\sqrt{2}+1\right) sq units

Answer

(422)\left(4\sqrt{2}-2\right) sq units

Explanation

Solution

Required area
=\int_\limits{0}^{\pi / 4}(\cos x-\sin x) d x+\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x
\int_\limits{5 \pi / 4}^{3 \pi / 2}(\cos x-\sin x) d x
=[sinxcosx]0π/4+[cosxsinx]π/45π/4=[\sin x-\cos x]_{0}^{\pi / 4}+[-\cos x-\sin x]_{\pi / 4}^{5 \pi / 4}
+[sinxcosx]5x/43π/4+[\sin x-\cos x]_{5 x / 4}^{3 \pi / 4}
=(422)=(4 \sqrt{2}-2) sq unitsa