Solveeit Logo

Question

Question: The area bounded by the curve y = x<sup>4</sup> – 2x<sup>3</sup> + x<sup>2</sup> + 3, the axis of ab...

The area bounded by the curve y = x4 – 2x3 + x2 + 3, the axis of abscissas and two ordinates corresponding to the points of minimum of the function y (x) is –

A

10/3

B

27/10

C

21/10

D

None of these

Answer

27/10

Explanation

Solution

Given curve is y = x4 – 2x3 + x2 + 3 \ dydx\frac { d y } { d x } = 4x3 – 6x2 + 2x = 12x2 – 12x + 2 For maxima and minima = 0 \ 4x3 – 6x2 + 2x = 0 then x = 0, 12\frac { 1 } { 2 } , 1

\ = 2, = – 1 nd = 2

\ Points of minimum are x = 0 and x = 1

\ Required area = 01(x42x3+x2+3)dx\int _ { 0 } ^ { 1 } \left( x ^ { 4 } - 2 x ^ { 3 } + x ^ { 2 } + 3 \right) d x

= [x552x44+x33+3x]01\left[ \frac { x ^ { 5 } } { 5 } - \frac { 2 x ^ { 4 } } { 4 } + \frac { x ^ { 3 } } { 3 } + 3 x \right] _ { 0 } ^ { 1 }

= 1524+13+3\frac { 1 } { 5 } - \frac { 2 } { 4 } + \frac { 1 } { 3 } + 3 = 1512+13+3\frac { 1 } { 5 } - \frac { 1 } { 2 } + \frac { 1 } { 3 } + 3= 2710\frac { 27 } { 10 }sq. units.