Solveeit Logo

Question

Question: The area bounded by the curve y = ƒ(x) = x<sup>4</sup> – 2x<sup>3</sup> + x<sup>2</sup> + 3, x-axis ...

The area bounded by the curve y = ƒ(x) = x4 – 2x3 + x2 + 3, x-axis and ordinates corresponding to minimum of the function ƒ(x) is -

A

1

B

91/30

C

30/9

D

4

Answer

91/30

Explanation

Solution

ƒ¢ (x) = 4x3 – 6x2 + 2x = 2x = 2x (2x2 – 3x + 1) = 2x (2x – 1) (x – 1).Since ƒ is a differentiable function, so extremum points of ƒ(x), we must have ƒ¢(x) = 0 so x = 0, 1/2, 1. Now ƒ¢¢(x) = 12x2 – 12x + 2, ƒ¢¢(0) = 2 ƒ¢¢(1) = 2 and ƒ¢¢(1/2) = 3 – 6 + 2 = –1. Thus the function has minimum at x = 0 and x = 1. Therefore, the required area = 01(x4\int _ { 0 } ^ { 1 } \left( x ^ { 4 } \right.– 2x3 + x2 + 3) dx

= (x55x42+x33+3x)01\left. \left( \frac { x ^ { 5 } } { 5 } - \frac { x ^ { 4 } } { 2 } + \frac { x ^ { 3 } } { 3 } + 3 x \right) \right| _ { 0 } ^ { 1 } = 15\frac { 1 } { 5 }12\frac { 1 } { 2 } + 13\frac { 1 } { 3 } + 3 = 9130\frac { 91 } { 30 }.