Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area bounded by the curve y=x2y = x^2, the normal at (1, 1) and the x-axis is :

A

43\frac{4}{3}

B

23\frac{2}{3}

C

13\frac{1}{3}

D

None

Answer

43\frac{4}{3}

Explanation

Solution

y=x2dydx=2x(dydx)(1,1)=2y = x^{2} \Rightarrow \frac{dy}{dx} = 2 x \Rightarrow \left(\frac{dy}{dx}\right)_{\left(1,1\right)} = 2 \therefore Slope of tangent at (1,1) = 2 \therefore Slope of normal at (1,1) = 12 - \frac{1}{2} Equation to the normal at (1, 1) is y1=12(x1)x+2y3=0y - 1 = - \frac{1}{2} (x -1) \, \Rightarrow \, x + 2y - 3 = 0 The normal intersects x-axis of (3,0) the required area is shown as shaded region. Required area A = area (OANO)+area (NABN) A=01x2dx+1312(3x)dxA = \int^{1}_{0} x^{2}dx + \int^{3}_{1} \frac{1}{2}\left(3-x\right)dx =[x33]01+12[3xx22]13=43= \left[\frac{x^{3}}{3}\right]^{1}_{0} + \frac{1}{2} \left[3x- \frac{x^{2}}{2}\right]^{3}_{1} = \frac{4}{3}