Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area bounded by the curve
y=x29y=|x^2−9|
and the line y = 3 is

A

4(23+64)4(2\sqrt3+\sqrt6-4)

B

4(43+64)4(4\sqrt3+\sqrt6-4)

C

8(43+369)8(4\sqrt3+3\sqrt6-9)

D

8(43+69)8(4\sqrt3+\sqrt6-9)

Answer

4(23+64)4(2\sqrt3+\sqrt6-4)

Explanation

Solution

The correct asnwer is (D) : 8(43+69)8(4\sqrt3+\sqrt6-9)

Fig.

=203(9+y9y)dy+239(9y)dy=2\int^{3}_{0}(\sqrt{9+y}-\sqrt{9-y})dy + 2\int^{9}_{3}(\sqrt{9-y})dy
=203((9+y)1/2(9y)dy+39(9y)1/2)dy=2\int^{3}_{0}((9+y)^{1/2}-(9-y)dy + \int^{9}_{3}({9-y})^{1/2})dy
=2[23[(9+y)3/2]03+23[(9y)3/2]0323[(9y)3/2]03]=2[\frac{2}{3}[(9+y)^{3/2}]^{3}_{0} + \frac{2}{3}[(9-y)^{3/2}]^{3}_{0}-\frac{2}{3}[(9-y)^{3/2}]^{3}_{0}]
=43[121227+6627(066)]= \frac{4}{3}[12\sqrt{12}-27+6\sqrt6-27-(0-6\sqrt6)]
=43[243+12654]=\frac{4}{3}[24\sqrt3+12\sqrt6-54]
=8(43+269)=8(4\sqrt3+2\sqrt6-9)