Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

The area bounded by the curve y=sinxy = \sin x between x=0x = 0 and x=2πx = 2\pi given by

A

4sunits4\, s\, units

B

3sunits3\, s\, units

C

0sunits0\, s\, units

D

2sunits2\, s \, units

Answer

4sunits4\, s\, units

Explanation

Solution

We have, y=sinx,x=0y = \sin x, x = 0 and x=2πx = 2\pi
\therefore Required area = Area of shaded region
02πsinxdx=0πsinxdx+π2π(sinx)dx\int\limits_{0}^{2\pi} \left|\sin x\right|dx = \int\limits_{0}^{\pi} \sin x dx + \int\limits_{\pi}^{2\pi} \left(-\sin x\right)dx
=[cosx]0π+[cosx]π2π=- \left[\cos x\right]^{\pi}_{0} + \left[\cos x\right]^{2\pi}_{\pi}
=[cosπcos0]+[cos2πcosπ]= -\left[\cos \pi -\cos 0\right]+\left[\cos 2\pi -\cos \pi\right]
=[11]+[1+1]=4=- \left[-1 -1 \right]+\left[1+1\right]=4