Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area bounded by the curve y = ln (x) and the lines y = 0, y = ln (3) and x = 0 is equal to :

A

3

B

3 ln (3) - 2

C

3 ln (3) + 2

D

2

Answer

2

Explanation

Solution

To find the point of intersection of curves y = ln (x) and y = ln (3), put ln (x) = ln (3) \Rightarrow ln (x) - ln (3) = 0 \Rightarrow ln (x) - ln (3) = ln (1) x3=1,x=3\Rightarrow \frac{x}{3} = 1 , \Rightarrow x = 3 Required area =03ln(3)dx13ln(x)dx =\int\limits^{3}_{0} \text{ln}\left(3\right) dx - \int\limits^{3}_{1} \text{ln}\left(x\right)dx =[xln(3)]03[xln(x)x]13=2= \left[x \,\text{ln} \left(3\right)\right]^{3}_{0} - \left[x \,\text{ln} \left(x\right) - x\right]^{3}_{1} = 2