Solveeit Logo

Question

Question: The area bounded by the curve \[y = \cos x\], the line joining \[\left( { - \pi /4,\cos \left( { - \...

The area bounded by the curve y=cosxy = \cos x, the line joining (π/4,cos(π/4))\left( { - \pi /4,\cos \left( { - \pi /4} \right)} \right) and (0,2)\left( {0,2} \right) and the line joining (π/4,cos(π/4))\left( { - \pi /4,\cos \left( { - \pi /4} \right)} \right) and (0,2)\left( {0,2} \right) is :
A) 4+28π2\dfrac{{4 + \sqrt 2 }}{8}\pi - \sqrt 2
B) 4+28π+2\dfrac{{4 + \sqrt 2 }}{8}\pi + \sqrt 2
C) 4+24π2\dfrac{{4 + \sqrt 2 }}{4}\pi - \sqrt 2
D) 4+28π+2\dfrac{{4 + \sqrt 2 }}{8}\pi + \sqrt 2

Explanation

Solution

We will first plot the curves and the points using the equation of curve and the points given. We will find the equation of the lines using the points. Then we will find the area under the two lines and the area under the curve and to get the required area, we will subtract the area under the curve from the area under the lines.

Complete Step by Step Solution:
We will first plot the curves and the points.

Now, we will find the equation of the line joining the points (π/4,cos(π/4))\left( { - \pi /4,\cos \left( { - \pi /4} \right)} \right) and (0,2)\left( {0,2} \right) , we know that the equation of the line is given by yy1=y2y1x2x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)
On substituting all the values of the coordinates of the point in the above formula, we get
y2=cos(π4)2(π4)0(x0)y - 2 = \dfrac{{\cos \left( { - \dfrac{\pi }{4}} \right) - 2}}{{\left( { - \dfrac{\pi }{4}} \right) - 0}}\left( {x - 0} \right)
On substituting cos(π4)=12\cos \left( { - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} in the above equation, we get
y2=122π4(x0)\Rightarrow y - 2 = \dfrac{{\dfrac{1}{{\sqrt 2 }} - 2}}{{ - \dfrac{\pi }{4}}}\left( {x - 0} \right)
On further simplification, we get
y2=4(221)π2x\Rightarrow y - 2 = \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}x
On adding 2 on both sides, we get
y=4(221)π2x+2\Rightarrow y = \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}x + 2 ………… (1)\left( 1 \right)
Area under this line can be obtained by integrating the equation of the line. From the graph, points of intersection of this line with the curve are (π/4,cos(π/4))\left( { - \pi /4,\cos \left( { - \pi /4} \right)} \right) and (0,2)\left( {0,2} \right). So, we need the area under the line in the interval [π4,0]\left[ { - \dfrac{\pi }{4},0} \right] . So, we can find the area as
A1=π40(4(221)π2x+2)dx{A_1} = \int\limits_{ - \dfrac{\pi }{4}}^0 {\left( {\dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}x + 2} \right)dx}
We can this expression as
A1=π404(221)π2dx+π402dx\Rightarrow {A_1} = \int\limits_{ - \dfrac{\pi }{4}}^0 {\dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}dx} + \int\limits_{ - \dfrac{\pi }{4}}^0 {2dx}
On integrating each term by taking constant out of the integration, we get
A1=4(221)π2[x22]π40+2[x]π40\Rightarrow {A_1} = \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left[ {\dfrac{{{x^2}}}{2}} \right]_{ - \dfrac{\pi }{4}}^0 + 2\left[ x \right]_{ - \dfrac{\pi }{4}}^0
On putting the limits of integration, we get
A1=4(221)π2[012(π4)2]+2[0(π4)]\Rightarrow {A_1} = \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left[ {0 - \dfrac{1}{2}{{\left( { - \dfrac{\pi }{4}} \right)}^2}} \right] + 2\left[ {0 - \left( { - \dfrac{\pi }{4}} \right)} \right]
On further simplifying the terms, we get
A1=π24(221)π2(π216)\Rightarrow {A_1} = \dfrac{\pi }{2} - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left( {\dfrac{{{\pi ^2}}}{{16}}} \right) ……… (2)\left( 2 \right)
Now, we will find the equation of the line joining the points (π/4,cos(π/4))\left( {\pi /4,\cos \left( {\pi /4} \right)} \right) and (0,2)\left( {0,2} \right) , we know that the equation of the line is given by yy1=y2y1x2x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)
On substituting all the values of the coordinates of the point in the above equation, we get
y2=cos(π4)2(π4)0(x0)y - 2 = \dfrac{{\cos \left( {\dfrac{\pi }{4}} \right) - 2}}{{\left( {\dfrac{\pi }{4}} \right) - 0}}\left( {x - 0} \right)
On substituting cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} in the above equation, we get
y2=122π4(x0)\Rightarrow y - 2 = \dfrac{{\dfrac{1}{{\sqrt 2 }} - 2}}{{\dfrac{\pi }{4}}}\left( {x - 0} \right)
On further simplification, we get
y2=4(221)π2x\Rightarrow y - 2 = - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}x
On adding 2 on both sides, we get
y=4(221)π2x+2\Rightarrow y = - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}x + 2 ………… (3)\left( 3 \right)
Area under this line can be obtained by integrating the equation of the line. From the graph, points of intersection of this line with the curve are (π/4,cos(π/4))\left( { - \pi /4,\cos \left( { - \pi /4} \right)} \right) and (0,2)\left( {0,2} \right). So, we need the area under the line in the interval [0,π4]\left[ {0,\dfrac{\pi }{4}} \right] . So, we can find the area as
A2=0π4(4(221)π2x+2)dx{A_2} = \int\limits_0^{\dfrac{\pi }{4}} {\left( { - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}x + 2} \right)dx}
We can write this expression as
A2=0π44(221)π2dx+0π42dx\Rightarrow {A_2} = \int\limits_0^{\dfrac{\pi }{4}} { - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}dx} + \int\limits_0^{\dfrac{\pi }{4}} {2dx}
On integrating each term by taking constant out of the integration, we get
A2=4(221)π2[x22]0π4+2[x]0π4\Rightarrow {A_2} = - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^{\dfrac{\pi }{4}} + 2\left[ x \right]_0^{\dfrac{\pi }{4}}
On putting the limits of integration, we get
A2=4(221)π2[12(π4)20]+2[π40]\Rightarrow {A_2} = - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left[ {\dfrac{1}{2}{{\left( {\dfrac{\pi }{4}} \right)}^2} - 0} \right] + 2\left[ {\dfrac{\pi }{4} - 0} \right]
On further simplifying the terms, we get
A2=π24(221)π2(π216)\Rightarrow {A_2} = \dfrac{\pi }{2} - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left( {\dfrac{{{\pi ^2}}}{{16}}} \right) ……… (3)\left( 3 \right)
Now, we will find the area under the curve y=cosxy = \cos x.
Area under this curve is given by
A3=π4π4cosxdx\Rightarrow {A_3} = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\cos x \cdot dx}
On integrating the term, we get
A3=[sinx]π4π4\Rightarrow {A_3} = \left[ {\sin x} \right]_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}}
On applying the limits, we get
A3=sinπ4sin(π4)\Rightarrow {A_3} = \sin \dfrac{\pi }{4} - \sin \left( { - \dfrac{\pi }{4}} \right)
We know that sin(π4)=12\sin \left( { - \dfrac{\pi }{4}} \right) = - \dfrac{1}{{\sqrt 2 }} and sin(π4)=12\sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}.
Thus, we get
A3=12(12)\Rightarrow {A_3} = \dfrac{1}{{\sqrt 2 }} - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)
On further simplification, we get
A3=22=2\Rightarrow {A_3} = \dfrac{2}{{\sqrt 2 }} = \sqrt 2
The required area will be equal to the sum of the area of the lines minus the area of the curve.
Required area =A1+A2A3 = {A_1} + {A_2} - {A_3}
On substituting the value of the areas, we get
\Rightarrow Required area =π24(221)π2(π216)+π24(221)π2(π216)2= \dfrac{\pi }{2} - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left( {\dfrac{{{\pi ^2}}}{{16}}} \right) + \dfrac{\pi }{2} - \dfrac{{4\left( {2\sqrt 2 - 1} \right)}}{{\pi \sqrt 2 }}\left( {\dfrac{{{\pi ^2}}}{{16}}} \right) - \sqrt 2
On further simplifying the terms, we get
\Rightarrow Required area =π(221)42π2= \pi - \dfrac{{\left( {2\sqrt 2 - 1} \right)}}{{4\sqrt 2 }}\pi - \sqrt 2
On taking the factor common, we get
\Rightarrow Required area =π(1(221)42)2= \pi \left( {1 - \dfrac{{\left( {2\sqrt 2 - 1} \right)}}{{4\sqrt 2 }}} \right) - \sqrt 2
On subtracting the terms, we get
\Rightarrow Required area =π(4222+142)2= \pi \left( {\dfrac{{4\sqrt 2 - 2\sqrt 2 + 1}}{{4\sqrt 2 }}} \right) - \sqrt 2
\Rightarrow Required area =π(22+142)2= \pi \left( {\dfrac{{2\sqrt 2 + 1}}{{4\sqrt 2 }}} \right) - \sqrt 2
On multiplying 2\sqrt 2 to numerator and denominator of the first term, we get
\Rightarrow Required area =π((22+1)242×2)2= \pi \left( {\dfrac{{\left( {2\sqrt 2 + 1} \right)\sqrt 2 }}{{4\sqrt 2 \times \sqrt 2 }}} \right) - \sqrt 2
\Rightarrow Required area =π(4+28)2= \pi \left( {\dfrac{{4 + \sqrt 2 }}{8}} \right) - \sqrt 2
Hence, the required area is equal to 4+28π2\dfrac{{4 + \sqrt 2 }}{8}\pi - \sqrt 2

Therefore, the correct option is option A.

Note:
To solve this problem, we need to remember the basic formulas of integration of many functions. Integration is a method of summing up the discrete data. It is the inverse of differentiation. We need to remember that the area under any curve and straight lines is calculated by using the integration method. We can see that the area that we have obtained is symmetrical about the yy axis.