Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area bounded by the curve y={x2,x<0 x,x0 y= \begin{cases} x^2,x<0 & \quad\\\ x,x \geq 0 & \quad \\\ \end{cases} and the line y=4y = 4 is

A

403\frac {40}{3}

B

163\frac {16}{3}

C

323\frac {32}{3}

D

83\frac {8}{3}

Answer

403\frac {40}{3}

Explanation

Solution

Given, curve y={x2,x<0 x,x0y= \begin{cases} x^2,x<0 \\\ x, x \ge 0 \end{cases}
and line y=4y=4
Area of OABO,

A_{1} =\int_\limits{y=0}^{4} \sqrt{y} d y
=[23y3/2]04=\left[\frac{2}{3} y^{3 / 2}\right]_{0}^{4}
t=23[(4)3/20]t=\frac{2}{3}\left[(4)^{3 / 2}-0\right]
=23×(2)3=\frac{2}{3} \times(2)^{3}
=163=\frac{16}{3}
and area of OBCOOBCO,
A_{2} =\int_\limits{0}^{4} y d y=\left[\frac{y^{2}}{2}\right]_{0}^{4}
=12[(4)20]=162=8=\frac{1}{2}\left[(4)^{2}-0\right]=\frac{16}{2}=8
Hence, area of OABO=A1+A2O A B O=A_{1}+A_{2}
=163+8=403=\frac{16}{3}+8=\frac{40}{3} sq unit