Solveeit Logo

Question

Question: The area bounded by the curve xy –3x –2y –10 = 0, x-axis and straight lines x = 3, x = 4 is...

The area bounded by the curve xy –3x –2y –10 = 0, x-axis and straight lines x = 3, x = 4 is

A

16 log 2 –13

B

16 log2 –3

C

16 log 2 + 3

D

None of these

Answer

16 log 2 + 3

Explanation

Solution

xy –3x –2y –10 = 0 ̃ y = 3x+10x2\frac{3x + 10}{x - 2}

\ area = 34ydx\int_{3}^{4}{ydx} \ area = 343x+10x2dx\int_{3}^{4}{\frac{3x + 10}{x - 2}dx}

area = 343(x2)+16x2dx\int _ { 3 } ^ { 4 } \frac { 3 ( x - 2 ) + 16 } { x - 2 } d x area = 343(x2)x2dx\int_{3}^{4}{\frac{3(x - 2)}{x - 2}dx}+ 3416x2dx\int_{3}^{4}{\frac{16}{x - 2}dx} area = 334dx\int_{3}^{4}{dx}+ 16 341x2dx\int_{3}^{4}{\frac{1}{x - 2}dx}

area = 3 =12[9+53]=163= \frac { 1 } { 2 } \left[ 9 + \frac { 5 } { 3 } \right] = \frac { 16 } { 3 } x )34_ { 3 } ^ { 4 } + 16 \thereforelog(x –2) }34_ { 3 } ^ { 4 }

Area = 3 + 16 log 2