Solveeit Logo

Question

Question: The area bounded by the curve x = a cos<sup>3</sup> t, y = a sin<sup>3</sup> t is –...

The area bounded by the curve x = a cos3 t, y = a sin3 t is –

A

3πa28\frac { 3 \pi \mathrm { a } ^ { 2 } } { 8 }

B

3πa216\frac { 3 \pi \mathrm { a } ^ { 2 } } { 16 }

C

3πa232\frac { 3 \pi \mathrm { a } ^ { 2 } } { 32 }

D

3pa2

Answer

3πa28\frac { 3 \pi \mathrm { a } ^ { 2 } } { 8 }

Explanation

Solution

Eliminating t, we have

x2/3 + y2/3 = a2/3 x = 0 Ž y = ± a

y = 0 Ž x = ± a Symmetric about both the axis.

Required area = 4 0aydx\int _ { 0 } ^ { a } y d x = 4π/20ydxdtdt\int _ { \pi / 2 } ^ { 0 } \mathrm { y } \cdot \frac { \mathrm { dx } } { \mathrm { dt } } \mathrm { dt } y = a sin3 t, x = a cos3 t Ž dx/dt = –3a cos2 t sin t = 4 t . (–3a cos2 t . sin t) dt = 12 a2 0π/2sin4\int _ { 0 } ^ { \pi / 2 } \sin ^ { 4 }t . cos2 t dt =

= 6a2×32×12×π12π3×2\frac { 6 \mathrm { a } ^ { 2 } \times \frac { 3 } { 2 } \times \frac { 1 } { 2 } \times \sqrt { \pi } \cdot \frac { 1 } { 2 } \sqrt { \pi } } { 3 \times 2 }

= 38\frac { 3 } { 8 }p a2