Solveeit Logo

Question

Question: The area bounded by the curve <img src="https://cdn.pureessence.tech/canvas_67.png?top_left_x=0&top_...

The area bounded by the curve + = and x2 + y2 = a2, a > 0 is -

A

sq. units

B

sq. units

C

{πa23a22}\left\{ \pi \mathrm { a } ^ { 2 } - \frac { 3 \mathrm { a } ^ { 2 } } { 2 } \right\}sq. units

D

None of these

Answer

sq. units

Explanation

Solution

The shaded region in figure represents the region enclosed by x2 + y2 = a2 and . From the symmetry, it is evident that

Required area = 4 [Area of the region bounded by the two curves in first quadrant only]

= 4 = 4dx

= 4

= 4[12xa2x2+12a2sin1xaaxx22+4a3x3/2]0a\left[ \frac { 1 } { 2 } x \sqrt { a ^ { 2 } - x ^ { 2 } + \frac { 1 } { 2 } } a ^ { 2 } \sin ^ { - 1 } \frac { x } { a } - a x - \frac { x ^ { 2 } } { 2 } + \frac { 4 \sqrt { a } } { 3 } x ^ { 3 / 2 } \right] _ { 0 } ^ { a }

= 4

= sq. units.