Solveeit Logo

Question

Question: The area bounded by the curve \(y ^ { 2 } = 4 x\) and \(x ^ { 2 } = 4 y\) is...

The area bounded by the curve y2=4xy ^ { 2 } = 4 x and x2=4yx ^ { 2 } = 4 y is

A

163\frac { 16 } { 3 } sq. units

B

316\frac { 3 } { 16 }sq. units

C

143\frac { 14 } { 3 } sq. units

D

314\frac { 3 } { 14 }sq. units

Answer

163\frac { 16 } { 3 } sq. units

Explanation

Solution

Required area =04(OABCODBC)= \int _ { 0 } ^ { 4 } ( O A B C - O D B C ) Region

=04(4xx24)= \int _ { 0 } ^ { 4 } \left( \sqrt { 4 x } - \frac { x ^ { 2 } } { 4 } \right) dx = 163\frac { 16 } { 3 } square unit.

Trick : From Important Tips’ the area of the region bounded by y2=4axy ^ { 2 } = 4 a x and x2=4byx ^ { 2 } = 4 b y is 16ab3\frac { 16 a b } { 3 } square unit.

Here y2=4xy ^ { 2 } = 4 x and x2=4yx ^ { 2 } = 4 y so a = 1 and b = 1

Required area = square unit.

DiD _ { i }