Solveeit Logo

Question

Question: The area bounded by the circle \(x ^ { 2 } + y ^ { 2 } = 4\) line \(x = \sqrt { 3 } y\) and \(x ...

The area bounded by the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 line x=3yx = \sqrt { 3 } y and xx -axis lying in the first quadrant, is

A

π2\frac { \pi } { 2 }

B

π4\frac { \pi } { 4 }

C

π3\frac { \pi } { 3 }

D

π\pi

Answer

π3\frac { \pi } { 3 }

Explanation

Solution

Required area =03x3dx+324x2dx= \int _ { 0 } ^ { \sqrt { 3 } } \frac { x } { \sqrt { 3 } } d x + \int _ { \sqrt { 3 } } ^ { 2 } \sqrt { 4 - x ^ { 2 } } d x

=13[x22]03+[x24x2+42sin1x2]32= \frac { 1 } { \sqrt { 3 } } \left[ \frac { x ^ { 2 } } { 2 } \right] _ { 0 } ^ { \sqrt { 3 } } + \left[ \frac { x } { 2 } \sqrt { 4 - x ^ { 2 } } + \frac { 4 } { 2 } \sin ^ { - 1 } \frac { x } { 2 } \right] _ { \sqrt { 3 } } ^ { 2 }

=32+[π322π3]=π3= \frac { \sqrt { 3 } } { 2 } + \left[ \pi - \frac { \sqrt { 3 } } { 2 } - \frac { 2 \pi } { 3 } \right] = \frac { \pi } { 3 }.

Trick : Area of sector made by an arc

=π642=π3= \frac { \pi } { 6 } \cdot \frac { 4 } { 2 } = \frac { \pi } { 3 }.