Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area bounded by f (x) =x2,0x1,g(x)=x+2,1x2=x^{2}, 0 \le x \le 1, g\left(x\right)=x+2,1\le x\le2 and x- axis is

A

32\frac{3}{2}

B

43\frac{4}{3}

C

83\frac{8}{3}

D

None of these

Answer

None of these

Explanation

Solution

Required area =AreaofOAB+Area of ABC
Now, Area of OAB =01f(x)dx+12g(x)dx\int\limits_{0}^{1} f\left(x\right)dx+\int\limits_{1}^{2} g \left(x\right)d x
=01x2dx+12(x+2)dx=\int\limits_{0}^{1} x^{2} dx +\int\limits_{1}^{2} \left(-x+2\right)d x
=x3301+[x22+2x]12=\frac{x^{3}}{3} | _{0}^{1}+\left[\frac{-x^{2}}{2}+2x\right]_{1}^{2}
=13+[(42+4)(12)+2]=\frac{1}{3}+\left[\left(\frac{-4}{2}+4\right)-\left(\frac{-1}{2}\right)+2\right]
=13+[(2+4)(32)]=\frac{1}{3}+\left[\left(-2+4\right)-\left(\frac{3}{2}\right)\right]
=13+12=56squnit=\frac{1}{3}+\frac{1}{2}=\frac{5}{6} \, sq\, unit