Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area bounded between the parabola y2=4xy^2= 4x and the line y=2x4y = 2x - 4 is equal to

A

15sunits15\, s\, units

B

173sunits\frac{17}{3}sunits

C

193sunits\frac{19}{3}sunits

D

9sunits9 sunits

Answer

9sunits9 sunits

Explanation

Solution

The point of intersection of y2=4xy^{2}=4 x and y=2x4y=2 x-4 is

(2x4)2=4x(2 x-4)^{2}=4 x
x25x+4=0\Rightarrow x^{2}-5 x+4=0
(x1)(x4)=0\Rightarrow (x-1)(x-4)=0
x=1,4\Rightarrow x=1,4
y=2,4\Rightarrow y=-2,4
\therefore Required area
=24(y+42)dy24y24dy=\displaystyle\int_{-2}^{4}\left(\frac{y+4}{2}\right) d y-\displaystyle\int_{-2}^{4} \frac{y^{2}}{4} d y
=12[y22+4y]2414[y33]24=\frac{1}{2}\left[\frac{y^{2}}{2}+4 y\right]_{-2}^{4}-\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{-2}^{4}
=12[8+16(28)]112[64+8]=\frac{1}{2}[8+16-(2-8)]-\frac{1}{12}[64+8]
=12[30]112(72)=\frac{1}{2}[30]-\frac{1}{12}(72)
=156=9=15-6=9 sq unit