Solveeit Logo

Question

Question: The area between the curves y = xe<sup>x</sup> and y = xe<sup>–x</sup> and the line x = 1 is...

The area between the curves y = xex and y = xe–x and the line x = 1 is

A

2e

B

e

C

2/e

D

1/e

Answer

2/e

Explanation

Solution

The line x = 1 meets the curves in A(1, e) and B(1, 1/e). Both the curves pass through the origin.

The required area

A =01(xexxex)dx\int _ { 0 } ^ { 1 } \left( x e ^ { x } - x e ^ { - x } \right) d x

= [x{ex+ex}]0101(ex+ex)1dx\left[ x \left\{ e ^ { x } + e ^ { - x } \right\} \right] _ { 0 } ^ { 1 } - \int _ { 0 } ^ { 1 } \left( e ^ { x } + e ^ { - x } \right) \cdot 1 d x

= (e+1e)[exex]01\left( e + \frac { 1 } { e } \right) - \left[ e ^ { x } - e ^ { - x } \right] _ { 0 } ^ { 1 }=(e+1e)(e1e)\left( e + \frac { 1 } { e } \right) - \left( e - \frac { 1 } { e } \right)

= 2/e sq. units