Solveeit Logo

Question

Question: The arc $AB$ with the centre $C$ and the infinitely long wire having linear charge density $\lambda$...

The arc ABAB with the centre CC and the infinitely long wire having linear charge density λ\lambda are lying in the same plane. Find the minimum amount of work to be done by external agent to move a point charge q0q_0 from point AA to BB through a circular path ABAB of radius aa.

A

q0λπϵ0ln(52)\frac{q_0\lambda}{\pi\epsilon_0}ln(\frac{5}{2})

B

q0λ2πϵ0ln(32)\frac{q_0\lambda}{2\pi\epsilon_0}ln(\frac{3}{2})

C

q0λπϵ0ln(3)\frac{q_0\lambda}{\pi\epsilon_0}ln(3)

D

2q0λπϵ0ln(32)\frac{2q_0\lambda}{\pi\epsilon_0}ln(\frac{3}{2})

Answer

q0λ2πϵ0ln(32)\frac{q_0\lambda}{2\pi\epsilon_0}ln(\frac{3}{2})

Explanation

Solution

The work done by an external agent to move a charge q0q_0 from point A to point B is given by Wext=q0(VBVA)W_{ext} = q_0 (V_B - V_A), where VAV_A and VBV_B are the electric potentials at points A and B, respectively. The electric potential at a distance rr from an infinitely long straight wire with linear charge density λ\lambda is V(r)=λ2πϵ0ln(r)+CV(r) = -\frac{\lambda}{2\pi\epsilon_0} \ln(r) + C', where CC' is an arbitrary constant.

From the geometry implied by the diagram and the options, we can deduce the distances of points A and B from the wire. Let the wire be along the y-axis (x=0x=0). The center of the arc C is at a distance 2a2a from the wire. Point A is located such that its distance from the wire is rA=3ar_A = 3a. Point B is located such that its distance from the wire is rB=2ar_B = 2a.

The potential at A is VA=λ2πϵ0ln(3a)+CV_A = -\frac{\lambda}{2\pi\epsilon_0} \ln(3a) + C'. The potential at B is VB=λ2πϵ0ln(2a)+CV_B = -\frac{\lambda}{2\pi\epsilon_0} \ln(2a) + C'.

The work done by the external agent is: Wext=q0(VBVA)W_{ext} = q_0 (V_B - V_A) Wext=q0[(λ2πϵ0ln(2a)+C)(λ2πϵ0ln(3a)+C)]W_{ext} = q_0 \left[ \left(-\frac{\lambda}{2\pi\epsilon_0} \ln(2a) + C'\right) - \left(-\frac{\lambda}{2\pi\epsilon_0} \ln(3a) + C'\right) \right] Wext=q0[λ2πϵ0ln(2a)+λ2πϵ0ln(3a)]W_{ext} = q_0 \left[ -\frac{\lambda}{2\pi\epsilon_0} \ln(2a) + \frac{\lambda}{2\pi\epsilon_0} \ln(3a) \right] Wext=q0λ2πϵ0[ln(3a)ln(2a)]W_{ext} = \frac{q_0\lambda}{2\pi\epsilon_0} \left[ \ln(3a) - \ln(2a) \right] Using the logarithm property lnxlny=ln(x/y)\ln x - \ln y = \ln(x/y): Wext=q0λ2πϵ0ln(3a2a)W_{ext} = \frac{q_0\lambda}{2\pi\epsilon_0} \ln\left(\frac{3a}{2a}\right) Wext=q0λ2πϵ0ln(32)W_{ext} = \frac{q_0\lambda}{2\pi\epsilon_0} \ln\left(\frac{3}{2}\right)