Solveeit Logo

Question

Mathematics Question on Application of derivatives

The approximate value of f(x)=x3+5x27x+9f\left(x\right)= x^{3}+5x^{2}-7x +9 at x=1.1x=1.1 is

A

8.68.6

B

8.58.5

C

8.48.4

D

8.38.3

Answer

8.68.6

Explanation

Solution

Given, f(x)=x3+5x27x+9f(x)=x^{3}+5 x^{2}-7x+9
On differentiating both sides w. r. t. xx, we get
f(x)=3x2+10x7f' (x)=3 x^{2}+10x-7
Let x=1x=1 and Δx=0.1\Delta x=0.1, so that
f(x+Δx)=f(1+0.1)=f(1.1)f(x+\Delta \,x)=f (1+0.1)=f(1.1)
We know that,
f(x+Δx)=f(x)+Δxf(x)f(x+\Delta \,x)=f(x)+\Delta x f' (x)
=x3+5x27x+9+Δx×(3x2+10x7)=x^{3}+5 x^{2}-7 x+9+\Delta \,x \times \left(3 x^{2}+10 x -7\right)
Put x=1x = 1 and Δx=0.1\Delta x=0.1, we get
f(1+0.1)f (1+0.1)
=13+5(1)27(1)+9+0.1×(3×12+10×17)=1^{3}+5(1)^{2}-7(1)+9+0.1 \times\left(3 \times 1^{2}+10 \times 1-7\right)
f(1.1)=1+57+9+0.1(3+107)\Rightarrow f(1.1)=1+5-7+9+0.1(3+10-7)
=8+0.1(6)=8+0.6=8.6=8+0.1(6)=8+0.6=8.6