Solveeit Logo

Question

Question: The anti derivative of \(f(x) = \frac{1}{3 + 5\sin x + 3\cos x}\) whose graph passes through the poi...

The anti derivative of f(x)=13+5sinx+3cosxf(x) = \frac{1}{3 + 5\sin x + 3\cos x} whose graph passes through the point (0,0)(0,0) is

A

15(log153tanx/2)\frac{1}{5}\left( \log\left| ⥂ 1 - \frac{5}{3}\tan x/2 \right| \right)

B

15(log1+53tanx/2)\frac{1}{5}\left( \log\left| ⥂ 1 + \frac{5}{3}\tan x/2 \right| \right)

C

15(log1+53cotx/2)\frac{1}{5}\left( \log\left| ⥂ 1 + \frac{5}{3}\cot x/2 \right| \right)

D

None of these

Answer

15(log1+53tanx/2)\frac{1}{5}\left( \log\left| ⥂ 1 + \frac{5}{3}\tan x/2 \right| \right)

Explanation

Solution

y=dx(3+5sinx+3cosx)=sec2x/2dx10tanx/2+6y = \int_{}^{}{\frac{dx}{(3 + 5\sin x + 3\cos x)} = \int_{}^{}\frac{\sec^{2}x/2dx}{10\tan x/2 + 6}} =15log(5tanx/2+3)+c= \frac{1}{5}\log(5\tan x/2 + 3) + c =15log53tanx/2+1+c= \frac{1}{5}\log\left| ⥂ \frac{5}{3}\tan x/2 + 1 \right| + c

Passes through(0,0)(0,0)

c=0\therefore c = 0 then y=15log1+53tanx/2y = \frac{1}{5}\log\left| 1 + \frac{5}{3}\tan x/2 \right|.