Solveeit Logo

Question

Question: The anti-derivative of \(f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)...

The anti-derivative of f(x)=log(logx)+(logx)2f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}} whose graph passes through (e,e)\left( {e,e} \right) is
A. x[log(logx)+(logx)1]x\left[ {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right]
B. x[log(logx)+(logx)1]+ex\left[ { - \log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right] + e
C. x[log(logx)(logx)1]+2ex\left[ {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 2e
D. x[log(logx)(logx)1]+3ex\left[ { - \log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right] + 3e

Explanation

Solution

The expression of f(x)f\left( x \right) is a polynomial in (logx)\left( {\log x} \right), so we will substitute (logx)=t\left( {\log x} \right) = t to simplify the above expression and then find the integral or anti-derivative of the given function. We will also use a special integral to find the anti-derivative, i.e. I=ex(f(x)+f(x))dx=exf(x)+CI = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C. The final integral will contain an arbitrary constant which can be eliminated by substituting the given point in the final expression.

Complete step by step answer:

We have, f(x)=log(logx)+(logx)2f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}}
Anti-derivative of a function of the inverse function of derivative, or we can say anti-derivative is the integral function.
Let antiderivative function of f(x)f\left( x \right)is II
So, by the definition of antiderivative, we have:
I=f(x)dxI = \int {f\left( x \right)dx}
I=(log(logx)+(logx)2)dx\Rightarrow I = \int {\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 2}}} \right)dx}
As, the given function is a function of logx\log x
So, we will substitute (logx)=t\left( {\log x} \right) = t,
Now, we have
t=logxt = \log x
Differentiating both sides with respect to x:
dt = d(logx)\Rightarrow {\text{dt = d}}\left( {{\text{logx}}} \right)
dt=1xdx\Rightarrow dt = \dfrac{1}{x}dx
dx = etdt\Rightarrow {\text{dx = }}{{\text{e}}^{\text{t}}}{\text{dt}}
Now, substitutingdx=etdtdx = {e^t}dt, we have
I=(log(t)+(t)2)etdtI = \int {\left( {\log \left( t \right) + {{\left( t \right)}^{ - 2}}} \right){e^t}dt}
I = (log(t) + 1t2)etdt\Rightarrow {\text{I = }}\int {\left( {{\text{log}}\left( {\text{t}} \right){\text{ + }}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} \right){{\text{e}}^{\text{t}}}{\text{dt}}}
I = etlogtdt + et1t2dt\Rightarrow {\text{I = }}\int {{{\text{e}}^{\text{t}}}{\text{logtdt + }}\int {{{\text{e}}^{\text{t}}}\dfrac{{\text{1}}}{{{{\text{t}}^{\text{2}}}}}} {\text{dt}}}
Now, adding and subtracting 1t\dfrac{{\text{1}}}{{\text{t}}} in, (log(t)+1t2)\left( {\log \left( t \right) + \dfrac{1}{{{t^2}}}} \right) in order to make the above term easy for simplification and substitution.
I=et(logt+1t)dt+et(1t21t)dt\Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt + \int {{e^t}\left( {\dfrac{1}{{{t^2}}} - \dfrac{1}{t}} \right)} dt}
Taking negative sign common from the second part of the above equation and simplify it as below given,
I=et(logt+1t)dtet(1t1t2)dt\Rightarrow I = \int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt - \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt}
Now, we know that the following special integral,
I=ex(f(x)+f(x))dx=exf(x)+CI = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C
Thus, by using the above property, we have:
et(logt+1t)dt=etlogt+C\int {{e^t}\left( {\log t + \dfrac{1}{t}} \right)dt = } {e^t}\log t + C and
et(1t1t2)dt=et1t+B\int {{e^t}\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right)} dt = {e^t}\dfrac{1}{t} + B
Where C and B are arbitrary constants.
I = etlogt + C - ett + B\Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}{\text{logt + C - }}\dfrac{{{{\text{e}}^{\text{t}}}}}{{\text{t}}}{\text{ + B}}
I = et(logt - 1t) + A\Rightarrow {\text{I = }}{{\text{e}}^{\text{t}}}\left( {{\text{logt - }}\dfrac{{\text{1}}}{{\text{t}}}} \right){\text{ + A}}, where A is an arbitrary constant.
Now, substituting back, t=logxt = \log x to find the antiderivative of the given function in terms of x, we have:
I = elogx(log(logx)1logx) + A\Rightarrow {\text{I = }}{{\text{e}}^{{\text{logx}}}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - \dfrac{{\text{1}}}{{{\text{logx}}}}} \right){\text{ + A}}
I = x(log(logx)(logx) - 1) + A\Rightarrow {\text{I = x}}\left( {{\text{log}}\left( {{\text{logx}}} \right) - {{\left( {{\text{logx}}} \right)}^{{\text{ - 1}}}}} \right){\text{ + A}}
Now, as given, the graph of antiderivative passes through (e,e)\left( {e,e} \right), therefore substituting x and y both as e
I=x(log(logx)(logx)1)+A\Rightarrow I = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + A
e=e(log(loge)(loge)1)+A\Rightarrow e = e\left( {\log \left( {\log e} \right) - {{\left( {\log e} \right)}^{ - 1}}} \right) + A
e=e(log11)+A\Rightarrow e = e\left( {\log 1 - 1} \right) + A
2e=A\Rightarrow 2e = A
A=2e\Rightarrow A = 2e
So, we have A=2eA = 2e, substituting A=2eA = 2e in the above result,
Thus, I=x(log(logx)(logx)1)+2eI = x\left( {\log \left( {\log x} \right) - {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e
Hence, the derivative function of f(x)=log(logx)+(logx)2f\left( x \right) = \log \left( {\log x} \right) + {\left( {\log x} \right)^{ - 2}} isx(log(logx)+(logx)1)+2ex\left( {\log \left( {\log x} \right) + {{\left( {\log x} \right)}^{ - 1}}} \right) + 2e, so option (c) is the correct answer.

Note: Students must remember the special integrals carefully and apply them in the problems to make them easy. Ability to convert a given integral into a known integral whose solution is known is also an important thing. The special integral used in the above problem is: I=ex(f(x)+f(x))dx=exf(x)+CI = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C
We will prove the above integral,
I=ex(f(x)+f(x))dxI = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx}
I=exf(x)+exf(x)I = \int {{e^x}f\left( x \right)} + \int {{e^x}f'\left( x \right)}
Now, using integrating by parts, using
uvdx=uvdxdudx(vdx)dx\int {uvdx} = u\int {vdx} - \int {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx}
So,
exf(x)=f(x)exdxd(f(x))dx(exdx)dx\int {{e^x}f\left( x \right)} = f\left( x \right)\int {{e^x}dx} - \int {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}\left( {\int {{e^x}dx} } \right)dx}
exf(x)=f(x)exf(x)exdx+C\Rightarrow \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} - \int {f'\left( x \right){e^x}dx} + C
f(x)exdx+exf(x)=f(x)ex+C\Rightarrow \int {f'\left( x \right){e^x}dx} + \int {{e^x}f\left( x \right)} = f\left( x \right){e^x} + C
ex(f(x)+f(x))dx=exf(x)+C\Rightarrow \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C
Thus, I=ex(f(x)+f(x))dx=exf(x)+CI = \int {{e^x}\left( {f\left( x \right) + f'\left( x \right)} \right)dx} = {e^x}f\left( x \right) + C
Hence, proved