Solveeit Logo

Question

Question: The angular velocity of the earth with which it has to rotate so that acceleration due to gravity on...

The angular velocity of the earth with which it has to rotate so that acceleration due to gravity on 60° latitude becomes zero is (Radius of earth = 6400 km. At the poles g = 10 ms–2)

A

2.5×10–3rad/sec

B

5.0×10–1rad/sec

C

10×101rad/sec10 \times 10 ^ { 1 } \mathrm { rad } / \mathrm { sec }

D

7.8×102rad/sec7.8 \times 10 ^ { - 2 } \mathrm { rad } / \mathrm { sec }

Answer

2.5×10–3rad/sec

Explanation

Solution

Effective acceleration due to gravity due to rotation of earthg=gω2Rcos2λg ^ { \prime } = g - \omega ^ { 2 } R \cos ^ { 2 } \lambda

0=gω2Rcos2600 = g - \omega ^ { 2 } R \cos ^ { 2 } 60 ^ { \circ }ω2R4=g\frac { \omega ^ { 2 } R } { 4 } = g

ω=4gR=2gR=2800radsec\omega = \sqrt { \frac { 4 g } { R } } = 2 \sqrt { \frac { g } { R } } = \frac { 2 } { 800 } \frac { \mathrm { rad } } { \mathrm { sec } }

[As g=0g ^ { \prime } = 0 and λ=60\lambda = 60 ^ { \circ }]

ω=1400=2.5×103radsec\omega = \frac { 1 } { 400 } = 2.5 \times 10 ^ { - 3 } \frac { \mathrm { rad } } { \mathrm { sec } }.