Solveeit Logo

Question

Question: The angular velocity of a body is \(\overset{\rightarrow}{\omega} = 2\widehat{i} + 3\widehat{j} + 4\...

The angular velocity of a body is ω=2i^+3j^+4k^\overset{\rightarrow}{\omega} = 2\widehat{i} + 3\widehat{j} + 4\widehat{k} and a torque τ=i^+2j^+3k^\overset{\rightarrow}{\tau} = \widehat{i} + 2\widehat{j} + 3\widehat{k} acts on it. The rotational power will be

A

20 W

B

15 W

C

17\sqrt{17}W

D

14\sqrt{14}W

Answer

20 W

Explanation

Solution

Power (P)=τ.ω=(i+2j^+3k^).(2i^+3j^+4k^)(P) = \overset{\rightarrow}{\tau}.\overset{\rightarrow}{\omega} = (i + 2\widehat{j} + 3\widehat{k}).(2\widehat{i} + 3\widehat{j} + 4\widehat{k})

=2+6+12= 2 + 6 + 12= 20 W