Solveeit Logo

Question

Physics Question on Energy in simple harmonic motion

The angular velocity and the amplitude of a simple pendulum is ω\omega and a respectively. At a displacement x from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is

A

(a2x2ω2)x2ω2 \frac{ ( a^2 - x^2 \, \omega^2 ) }{ x^2 \, \omega^2 }

B

x2ω2(a2x2ω2) \frac{ x^2 \, \omega^2}{ (a^2 - x^2 \, \omega^2 )}

C

(a2x2)x2\frac{ (a^2 - x^2) }{ x^2 }

D

x2(a2x2)\frac{ x^2 }{ (a^2 - x^2 )}

Answer

(a2x2)x2\frac{ (a^2 - x^2) }{ x^2 }

Explanation

Solution

PE. F = 12mω2x2\frac{1}{2} m \omega^2 \, x^2
and KE, T = 12mω2(a2x2) \frac{1}{2} m \omega^2 (a^2 - x^2)
TV=a2x2x2\therefore \frac{ T}{ V} = \frac{ a^2 - x^2 }{ x^2 }