Solveeit Logo

Question

Question: The angular velocity and the amplitude of a simple pendulum is \(\omega\) and a respectively. At a d...

The angular velocity and the amplitude of a simple pendulum is ω\omega and a respectively. At a displacement X from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is

A

X2ω2/(a2X2ω2)X^{2}\omega^{2}/(a^{2} - X^{2}\omega^{2})

B

X2/(a2X2)X^{2}/(a^{2} - X^{2})

C

(a2X2ω2)/X2ω2(a^{2} - X^{2}\omega^{2})/X^{2}\omega^{2}

D

(a2X2)/X2(a^{2} - X^{2})/X^{2}

Answer

(a2X2)/X2(a^{2} - X^{2})/X^{2}

Explanation

Solution

Kinetic energy T=12mω2(a2x2)T = \frac{1}{2}m\omega^{2}(a^{2} - x^{2})

and potential energy,

V=12mω2x2V = \frac{1}{2}m\omega^{2}x^{2} TV=a2x2x2\therefore\frac{T}{V} = \frac{a^{2} - x^{2}}{x^{2}}