Solveeit Logo

Question

Question: The angular points of a triangle are\(A{\text{( - 1, - 7), }}B(5,1),{\text{ }}C(1,4).\)The equation ...

The angular points of a triangle areA( - 1, - 7), B(5,1), C(1,4).A{\text{( - 1, - 7), }}B(5,1),{\text{ }}C(1,4).The equation of bisector of angle
ABC\angle ABC is
A. x=7y+2 B. 7y=x+2 C. y = 7x + 2 D. 7x=y+2  {\text{A}}{\text{. x}} = 7y + 2 \\\ {\text{B}}{\text{. }}7y = x + 2 \\\ {\text{C}}{\text{. }}y{\text{ = 7}}x{\text{ + 2}} \\\ {\text{D}}{\text{. 7}}x = y + 2 \\\

Explanation

Solution

Hint: An angle bisector is a ray in the interior of an angle forming two congruent angles. In this problem you first need to find the coordinates of point DD which is on ABAB using section formula and then find the equation of line BDBD.

Complete step-by-step answer:
Let ABCABC is triangle with coordinates A( - 1, - 7), B(5,1), C(1,4).A{\text{( - 1, - 7), }}B(5,1),{\text{ }}C(1,4).Since, we know that the angle bisector of a triangle divides the opposite side into two segments that are proportional to the other sides of the triangle.

Since, the distance between two points is given by (x2x1)2+(y2y1)2\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} where (x1,y1) and (x2,y2) ({x_1},{y_1}){\text{ and }}({x_2},{y_2}){\text{ }}are coordinates of two points.
Now, the length of ABAB
5(1)2+1(7)2 (6)2+(8)2 10  \Rightarrow \sqrt {{{\\{ 5 - ( - 1)\\} }^2} + {{\\{ 1 - ( - 7)\\} }^2}} \\\ \Rightarrow \sqrt {{{(6)}^2} + {{(8)}^2}} \\\ \Rightarrow 10 \\\
And, the length of BCBC
(15)2+(41)2 (4)2+(3)2 5  \Rightarrow \sqrt {{{(1 - 5)}^2} + {{(4 - 1)}^2}} \\\ \Rightarrow \sqrt {{{( - 4)}^2} + {{(3)}^2}} \\\ \Rightarrow 5 \\\
Now, the angular bisector of angle ABC\angle ABC is divides the opposite side ACAC in ratio 10:5 or 2:1
By using Section Formula
If a point P(x,y)P(x,y) divides the line joining two points Q(a,b) and R(c,d)Q(a,b){\text{ and }}R(c,d) in the ratio m:nm:n internally, then the coordinates of P(x,y)P(x,y) are given by
P(x,y)=(c.m+a.nm+n,d.m+b.nm+n)\Rightarrow P(x,y) = (\dfrac{{c.m + a.n}}{{m + n}},\dfrac{{d.m + b.n}}{{m + n}})
Here m=2m=2 , n=1n=1 ,A(1,7)A(-1,-7) and C(1,4)C(1,4).
P(x,y)=(2.1+1.(1)2+1,2.4+1.(7)2+1)\Rightarrow P(x,y) = (\dfrac{{2.1 + 1.(-1)}}{{2 + 1}},\dfrac{{2.4 + 1.(-7)}}{{2 + 1}})
Then, the coordinates of point DD on line ABAB
D=(213,873) D=(13,13)  \Rightarrow D = (\dfrac{{ 2 - 1}}{3},\dfrac{{ 8 - 7}}{3}) \\\ \Rightarrow D = (\dfrac{1}{3},\dfrac{1}{3}) \\\
Since, the equation of line passing through two given points is given byyy1=(y2y1x2x1)(xx1)y - {y_1} = (\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}})(x - {x_1})where (x1,y1) and (x2,y2)({x_1},{y_1}){\text{ and (}}{x_2},{y_2}) are coordinates of two points
Then equation of angular bisector(BD)(BD) of angle ABC\angle ABC is given by
 y1=(113)(513)(x5) y1=214(x5) 7(y1)=(x5) x7y+2=0 x+2=7y  \Rightarrow {\text{ }}y - 1 = \dfrac{{(1 - \dfrac{1}{3})}}{{(5 - \dfrac{1}{3})}}(x - 5) \\\ \Rightarrow y - 1 = \dfrac{2}{{14}}(x - 5) \\\ \Rightarrow 7(y - 1) = (x - 5) \\\ \Rightarrow x - 7y + 2 = 0 \\\ \Rightarrow x + 2 = 7y \\\
Hence, option B is correct.

Note: Whenever you get this type of question the key concept of solving this is to have knowledge about angular bisector ,its properties , Section Formula, formation of equation of line using two points which is given by yy1=(y2y1x2x1)(xx1)y - {y_1} = (\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}})(x - {x_1}) and how to apply them. You should make a rough diagram of the question to get a better understanding.