Solveeit Logo

Question

Question: The angular elevation of a tower CD at a point A due south of it is 60<sup>o</sup> and at a point B ...

The angular elevation of a tower CD at a point A due south of it is 60o and at a point B due west of A, the elevation is AB=3A B = 3km, the height of the tower is

A

232 \sqrt { 3 }km

B

262 \sqrt { 6 } km

C

332\frac { 3 \sqrt { 3 } } { 2 } km

D

364\frac { 3 \sqrt { 6 } } { 4 } km

Answer

364\frac { 3 \sqrt { 6 } } { 4 } km

Explanation

Solution

In CBD\triangle C B D, tan30=hBCBC=3h\tan 30 ^ { \circ } = \frac { h } { B C } \Rightarrow B C = \sqrt { 3 } h ,

In ACD\triangle A C D, tan60=hACAC=h3\tan 60 ^ { \circ } = \frac { h } { A C } \Rightarrow A C = \frac { h } { \sqrt { 3 } }

Now, 27=10h227 = 10 h ^ { 2 }

h2=2710h=3310=3620364h ^ { 2 } = \frac { 27 } { 10 } \Rightarrow h = \frac { 3 \sqrt { 3 } } { \sqrt { 10 } } = \frac { 3 \sqrt { 6 } } { \sqrt { 20 } } \simeq \frac { 3 \sqrt { 6 } } { 4 } km