Solveeit Logo

Question

Physics Question on Oscillations

The angular amplitude of a simple pendulum is θ0\theta_{0}. The maximum tension in its string will be

A

mg(1θ0)m g\left(1-\theta_{0}\right)

B

mg(1+θ0)m g\left(1+\theta_{0}\right)

C

mg(1θ02)m g\left(1-\theta_{0}^{2}\right)

D

mg(1+θ02)m g\left(1+\theta_{0}^{2}\right)

Answer

mg(1+θ02)m g\left(1+\theta_{0}^{2}\right)

Explanation

Solution

The simple pendulum at angular amplitude θ0\theta_{0} is shown in the figure. Maximum tension in the string is
Tmax=mg+mv2l...(i)T_{\max }=m g+\frac{m v^{2}}{l}\,\,\,...(i)
When bob of the pendulum comes from AA to BB, it covers a vertidal distance hh

cosθ0=lhl\therefore \cos \theta_{0}=\frac{l-h}{l}
h=l(1cosθ0)...(ii)\Rightarrow h=l\left(1-\cos \theta_{0}\right)\,\,\,...(ii)
Also during AA to BB, potential energy of bob converts into kinetic energy ie, mgh=12mv2m g h=\frac{1}{2} m v^{2}
v=2gh...(iii)\therefore v=\sqrt{2 g h}\,\,\,...(iii)
Thus, using Eqs. (i), (ii) and (iii), we obtain
Tmax=mg+2mgll(1cosθ0)T_{\max } =m g+\frac{2 m g}{l} l\left(1-\cos \theta_{0}\right)
=mg+2mg[11+θ022]=m g+2 m g\left[1-1+\frac{\theta_{0}^{2}}{2}\right]
=mg(1+θ02)=m g\left(1+\theta_{0}^{2}\right)