Solveeit Logo

Question

Physics Question on laws of motion

The angular amplitude of a simple pendulum is θ0\theta_{0} The maximum-tension in its string will be

A

mg(1θ0)mg(1 - \theta_0)

B

mg(1+θ0)m g\left(1+\theta_{0}\right)

C

mg(1θ02)m g\left(1-\theta_{0}^{2}\right)

D

mg(1+θ02)m g\left(1+\theta_{0}^{2}\right)

Answer

mg(1+θ02)m g\left(1+\theta_{0}^{2}\right)

Explanation

Solution

The simple pendulum at angular amplitude θ0{{\theta }_{0}} is shown in the figure. Tmax=mg+mv2l... {{T}_{\max }}=mg+\frac{m{{v}^{2}}}{l} \,\,\,... (i) When bob of pendulum comes from AA to BB , it covers a vertical distance h. cosθ0=lhl\therefore \cos {{\theta }_{0}}=\frac{l-h}{l} h=l(1cosθ0)h=l(1-\cos {{\theta }_{0}}) ... (ii) Also during AA to BB , potential energy of bob converts into kinetic energy ie, mgh=12mv2mgh=\frac{1}{2}m{{v}^{2}} \therefore v=2ghv=\sqrt{2gh} ... (iii) Thus, using Eqs. (i), (ii) and (iii), we obtain Tmax=mg+2mgll(1cosθ0){{T}_{\max }}=mg+\frac{2mg}{l}l(1-\cos {{\theta }_{0}}) =mg+2mg[11+θ022]=mg+2mg\left[ 1-1+\frac{\theta _{0}^{2}}{2} \right] =mg(1+θ02)=m g\left(1+\theta_{0}^{2}\right)