Solveeit Logo

Question

Question: The angles of a quadrilateral are in A.P. and the greatest angle is 120<sup>o</sup>, the angles in r...

The angles of a quadrilateral are in A.P. and the greatest angle is 120o, the angles in radians are

A

π3,4π9,5π9,2π3\frac{\pi}{3},\frac{4\pi}{9},\frac{5\pi}{9},\frac{2\pi}{3}

B

π3,π2,2π3,3π3\frac{\pi}{3},\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{3}

C

5π18,8π18,11π18,12π18\frac{5\pi}{18},\frac{8\pi}{18},\frac{11\pi}{18},\frac{12\pi}{18}

D

None of these

Answer

π3,4π9,5π9,2π3\frac{\pi}{3},\frac{4\pi}{9},\frac{5\pi}{9},\frac{2\pi}{3}

Explanation

Solution

Let the angles in degrees be α3δ,αδ,α+δ,α+3δ\alpha - 3\delta,\alpha - \delta,\alpha + \delta,\alpha + 3\delta

Sum of the angles =4α=360o= 4\alpha = 360^{o}α=90o\alpha = 90^{o}

Also greatest angle =α+3δ=120o= \alpha + 3\delta = 120^{o},

Hence, 3δ=120oα=120o90o=30o3\delta = 120^{o} - \alpha = 120^{o} - 90^{o} = 30^{o}δ=10o\delta = 10^{o}

Hence the angles are 90o30o,90o10o,90o+10o90^{o} - 30^{o},90^{o} - 10^{o},90^{o} + 10^{o} and

90o+30o90^{o} + 30^{o}

That is, the angles in degrees are 60o,80o,100o60^{o},80^{o},100^{o} and 120o120^{o}

∴ In terms of radians the angles are

60×π180,80×π180,100×π18060 \times \frac{\pi}{180},80 \times \frac{\pi}{180},100 \times \frac{\pi}{180}and 120×π180120 \times \frac{\pi}{180} that is

π3,4π9,5π9\frac{\pi}{3},\frac{4\pi}{9},\frac{5\pi}{9} and 2π3\frac{2\pi}{3}.