Solveeit Logo

Question

Question: The angles between the lines \(x\cos \alpha +y\sin \alpha =a\) and \(x\sin \beta -y\cos \beta =a\) i...

The angles between the lines xcosα+ysinα=ax\cos \alpha +y\sin \alpha =a and xsinβycosβ=ax\sin \beta -y\cos \beta =a is
(a) βα\beta -\alpha
(b) π+βα\pi +\beta -\alpha
(c) π2+β+α\dfrac{\pi }{2}+\beta +\alpha
(d) π2β+α\dfrac{\pi }{2}-\beta +\alpha

Explanation

Solution

Hint:The formula to find angle between two lines is given by tanθ=m2m11+m1m2\tan \theta =\left| \left. \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| \right. and after using tan1{{\tan }^{-1}} on both the sides of the equation will imply tan1(tanθ)=tan1m2m11+m1m2{{\tan }^{-1}}\left( \tan \theta \right)={{\tan }^{-1}}\left| \left. \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| \right.. Thus the direct formula is given by θ=tan1m2m11+m1m2\theta ={{\tan }^{-1}}\left| \left. \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| \right.. Here m1{{m}_{1}} and m2{{m}_{2}} are slopes of their respected lines.

Complete step-by-step answer:
The figure for equations xcosα+ysinα=a,xsinβycosβ=ax\cos \alpha +y\sin \alpha =a\,,\,x\sin \beta -y\cos \beta =a by considering its particular equation a=1 is shown below

Now we consider general equation for a straight line y=mx+cy=mx+c
Consider the given equation xcosα+ysinα=ax\cos \alpha +y\sin \alpha =a and solve it by leaving y on the left side of the equal sign and the rest on the right side of the equal sign. Therefore we get,
ysinα=axcosα y=cosαsinαx+asinα \begin{aligned} & y\sin \alpha =a-x\cos \alpha \\\ & y=\dfrac{-\cos \alpha }{\sin \alpha }x+\dfrac{a}{\sin \alpha } \\\ \end{aligned}
Comparing y=cosαsinαx+asinαy=\dfrac{-\cos \alpha }{\sin \alpha }x+\dfrac{a}{\sin \alpha } with the general equation y=m1x+cy={{m}_{1}}x+c we get the slope m1=cosαsinα{{m}_{1}}=\dfrac{-\cos \alpha }{\sin \alpha } here cosαsinα\dfrac{-\cos \alpha }{\sin \alpha } can be written as cotα-\cot \alpha and the other expression for cotα-\cot \alpha is given by 1tanα-\dfrac{1}{\tan \alpha }
Now we find the slope for equation xsinβycosβ=ax\sin \beta -y\cos \beta =a by taking required terms to the right side of the expression resulting into ycosβ=acosβ+xsinβcosβy\cos \beta =\dfrac{a}{\cos \beta }+x\dfrac{\sin \beta }{\cos \beta } and dividing whole equation by cosβ\cos \beta we get y=xsinβcosβacosβy=x\dfrac{\sin \beta }{\cos \beta }-\dfrac{a}{\cos \beta }
Now comparing y=+sinβcosβxacosβy=+\dfrac{\sin \beta }{\cos \beta }x-\dfrac{a}{\cos \beta } with standard equation of line y=m2x+cy={{m}_{2}}x+c we get
m2=+sinβcosβ{{m}_{2}}=+\dfrac{\sin \beta }{\cos \beta } also sinβcosβ\dfrac{\sin \beta }{\cos \beta } can be written as tanβ\tan \beta
Clearly the slopes are not parallel since m1m2{{m}_{1}}\ne {{m}_{2}}
Now to find the angle between the lines we use the formula tanθ=m1m21+m1m2\tan \theta =\left| \left. \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \right.
tanθ=(cosαsinα)(sinβcosβ)1+(cosαsinα)(sinβcosβ) tanθ=(cosαsinα)sinβcosβ1+(cosαsinα)(sinβcosβ) \begin{aligned} & \Rightarrow \tan \theta =\left| \left. \dfrac{\left( \dfrac{-\cos \alpha }{\sin \alpha } \right)-\left( \dfrac{\sin \beta }{\cos \beta } \right)}{1+\left( \dfrac{-\cos \alpha }{\sin \alpha } \right)\left( \dfrac{\sin \beta }{\cos \beta } \right)} \right| \right. \\\ & \Rightarrow \tan \theta =\left| \left. \dfrac{\left( \dfrac{-\cos \alpha }{\sin \alpha } \right)-\dfrac{\sin \beta }{\cos \beta }}{1+\left( \dfrac{-\cos \alpha }{\sin \alpha } \right)\left( \dfrac{\sin \beta }{\cos \beta } \right)} \right| \right. \\\ \end{aligned}
Therefore we get,
tanθ=(cosαcosβsinβsinαsinαcosβ)sinαcosβcosαsinβsinαcosβ\tan \theta =\left| \left. \dfrac{\left( \dfrac{-\cos \alpha \cos \beta -\sin \beta \sin \alpha }{\sin \alpha \cos \beta } \right)}{\dfrac{\sin \alpha \cos \beta -\cos \alpha \sin \beta }{\sin \alpha \cos \beta }} \right| \right.
Apply simplification here by cancelling the common term sinαcosβ\sin \alpha \cos \beta in numerator and denominator. After this we will be left with cosαcosβsinβsinαsinαcosβcosαsinβ\left| \left. \dfrac{-\cos \alpha \cos \beta -\sin \beta \sin \alpha }{\sin \alpha \cos \beta -\cos \alpha \sin \beta } \right| \right.
Now open the modulus and it will result into a positive expression cosαcosβsinβsinαsinαcosβcosαsinβ=cosαcosβ+sinβsinαsinαcosβcosαsinβ....(ii)\left| \left. \dfrac{-\cos \alpha \cos \beta -\sin \beta \sin \alpha }{\sin \alpha \cos \beta -\cos \alpha \sin \beta } \right| \right.=\dfrac{\cos \alpha \cos \beta +\sin \beta \sin \alpha }{\sin \alpha \cos \beta -\cos \alpha \sin \beta }....(ii)
Now we use the following formulas cos(AB)=cosAcosBsinAsinB,sin(AB)=sinAcosBcosAsinB\cos \left( A-B \right)=\cos A\cos B-\sin A\sin B\,,\,\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B in equation (ii)(ii) we get,
cosαcosβ+sinβsinαsinαcosβcosαsinβ=cos(αβ)sin(αβ) cosαcosβ+sinβsinαsinαcosβcosαsinβ=cot(αβ) tanθ=cot(αβ) \begin{aligned} & \dfrac{\cos \alpha \cos \beta +\sin \beta \sin \alpha }{\sin \alpha \cos \beta -\cos \alpha \sin \beta }=\dfrac{\cos \left( \alpha -\beta \right)}{\sin \left( \alpha -\beta \right)} \\\ & \Rightarrow \dfrac{\cos \alpha \cos \beta +\sin \beta \sin \alpha }{\sin \alpha \cos \beta -\cos \alpha \sin \beta }=\cot \left( \alpha -\beta \right) \\\ & \Rightarrow \tan \theta =\cot \left( \alpha -\beta \right) \\\ \end{aligned}
The term cot(αβ)\cot \left( \alpha -\beta \right) can also be written as tan(π2+(αβ))\tan \left( \dfrac{\pi }{2}+\left( \alpha -\beta \right) \right)
Therefore we get tan(π2+(αβ))=tan(π2+αβ)\tan \left( \dfrac{\pi }{2}+\left( \alpha -\beta \right) \right)=\tan \left( \dfrac{\pi }{2}+\alpha -\beta \right)
This gives the value of tanθ=tan(π2+αβ)\tan \theta =\tan \left( \dfrac{\pi }{2}+\alpha -\beta \right) and after using tan1{{\tan }^{-1}} on both the sides of the equation will imply tan1(tan(π2+(αβ)))=tan1(tan(π2+αβ)){{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{2}+\left( \alpha -\beta \right) \right) \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{2}+\alpha -\beta \right) \right)
Hence the correct option is (d).

Note: By focusing on trigonometric terms and finding slopes implies option (d). Otherwise if any mistake is done between angles and their signs will imply either option (a) or (c). It is clear that the lines are not parallel since the slopes are not equal. But here it cannot be said that the angle can be 90 degrees. So in one go apply the formula for finding angle between two lines directly. This will imply the answer faster.
We could have solved it by the formula for slope. But here no points are given directly. That is why the method of comparing equations with the standard equation of line is used here.

In the figure below we can see that the slope of the line is θ\theta

Taking figure as a guide the formula of the slope is given by m=y2y1x2x1m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}