Solveeit Logo

Question

Mathematics Question on measurement of angles

The angles A,BA, B and CC of a triangle ABCABC are in A.P. If b:c=3:2b : c =\sqrt {3} : \sqrt {2} then the angle AA is

A

30^\circ

B

15^\circ

C

75^\circ

D

45^\circ

Answer

75^\circ

Explanation

Solution

The correct answer is C:7575\degree
Given data:
In ABC\triangle{ABC}
b:c=3:2b\ratio{c}=\sqrt{3}\ratio\sqrt{2}
we know that,
asinA=bsinB=csinC\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}-(i)
the angles A,B,C are in A.P(Given)
2B=A+C\therefore 2B=A+C
we know that, A+B+C=180\angle{A}+\angle{B}+\angle{C}=180\degree
2B+B=1802\angle{B}+\angle{B}=180\degree
B=60\angle{B}=60\degree
From equation (i), bc=sinBsinC\frac{b}{c}=\frac{sinB}{sin{C}}
32=sin60sinc\frac{\sqrt{3}}{\sqrt{2}}=\frac{sin60\degree}{sinc}
32=32sinc\frac{\sqrt{3}}{\sqrt{2}}=\frac{\frac{\sqrt{3}}{2}}{sinc}
sinc=12sinc=\frac{1}{\sqrt{2}}
C=45\angle{C}=45\degree
A+B+C=180\therefore \angle{A}+\angle{B}+\angle{C}=180\degree
A=1806045\angle{A}=180\degree-60\degree-45\degree
A=75A=75\degree