Solveeit Logo

Question

Physics Question on projectile motion

The angle of projection for a projectile to have same horizontal range and maximum height is :

A

tan1(2)\tan^{-1}(2)

B

tan1(4)\tan^{-1}(4)

C

tan1(14)\tan^{-1}\left(\frac{1}{4}\right)

D

tan1(12)\tan^{-1}\left(\frac{1}{2}\right)

Answer

tan1(4)\tan^{-1}(4)

Explanation

Solution

The horizontal range is:
u2sin2θg,\frac{u^2 \sin 2\theta}{g},
and the maximum height is:
u2sin2θ2g.\frac{u^2 \sin^2 \theta}{2g}.
Equating:
u2sin2θg=u2sin2θ2g.\frac{u^2 \sin 2\theta}{g} = \frac{u^2 \sin^2 \theta}{2g}.
Simplifying:
2sinθcosθ=sin2θ2.2 \sin \theta \cos \theta = \frac{\sin^2 \theta}{2}.
Substitute sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta:
4sinθcosθ=sin2θ    4=tanθ.4 \sin \theta \cos \theta = \sin^2 \theta \implies 4 = \tan \theta.
Thus:
θ=tan1(4).\theta = \tan^{-1}(4).