Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

The angle of minimum deviation in an equilateral prism of refractive index 1.414 is

A

6060^\circ

B

3030^\circ

C

9090^\circ

D

4545^\circ

Answer

3030^\circ

Explanation

Solution

μ=(sinA+δm2)sinA2 \mu = \frac{\bigg(\sin\frac{A+\delta_m}{2}\bigg)}{\sin\frac{A}{2}}
or 1.414=(sin60+δm2)sin6021.414 = \frac{\bigg(\sin\frac{60^\circ+\delta_m}{2}\bigg)}{\sin\frac{60^\circ}{2}}
(for equilateral prism, A=60A = 60^\circ)
or 2=sin[60+δm2]sin30(21.414) \sqrt 2 = \frac{\sin\bigg[\frac{60^\circ+\delta_m}{2}\bigg]}{\sin 30^\circ } (\because \sqrt 2 \approx 1.414 )
2×12=sin(60+δm2)\sqrt 2 \times \frac{1}{2} = \sin\bigg(\frac{60^\circ+\delta_m}{2}\bigg)
or 12=sin(60+δm2) \frac{1}{\sqrt 2} = \sin\bigg(\frac{60^\circ+\delta_m}{2}\bigg)
sin45=sin(60+δm2)sin\, 45^\circ = sin\bigg(\frac{60^\circ+\delta_m}{2}\bigg)
or 60+δm=9060^\circ + \delta_m = 90^\circ
or δm=30\delta_m = 30^\circ