Solveeit Logo

Question

Question: The angle of minimum deviation for a 90° prism is 30°. What is the speed of light in the prism?...

The angle of minimum deviation for a 90° prism is 30°. What is the speed of light in the prism?

A

2.4×108 ms-1

B

2.1×108 ms-1

C

1.8×108 ms-1

D

2.2×108 ms-1

Answer

2.4×108 ms-1

Explanation

Solution

To find the speed of light in the prism, we first need to determine the refractive index of the prism material.

Given:

  1. Angle of the prism, A=90A = 90^\circ
  2. Angle of minimum deviation, δm=30\delta_m = 30^\circ
  3. Speed of light in vacuum, c=3×108 m/sc = 3 \times 10^8 \text{ m/s}

The formula for the refractive index (nn) of a prism in terms of the prism angle (AA) and the angle of minimum deviation (δm\delta_m) is: n=sin(A+δm2)sin(A2)n = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}

Substitute the given values: A+δm2=90+302=1202=60\frac{A + \delta_m}{2} = \frac{90^\circ + 30^\circ}{2} = \frac{120^\circ}{2} = 60^\circ A2=902=45\frac{A}{2} = \frac{90^\circ}{2} = 45^\circ

Now, substitute these into the refractive index formula: n=sin(60)sin(45)n = \frac{\sin(60^\circ)}{\sin(45^\circ)} We know that sin(60)=32\sin(60^\circ) = \frac{\sqrt{3}}{2} and sin(45)=12\sin(45^\circ) = \frac{1}{\sqrt{2}}. n=3212=32×2=62n = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{\sqrt{2}}} = \frac{\sqrt{3}}{2} \times \sqrt{2} = \frac{\sqrt{6}}{2}

Next, we use the relationship between the refractive index (nn), the speed of light in vacuum (cc), and the speed of light in the prism (vv): n=cvn = \frac{c}{v}

Rearrange the formula to solve for vv: v=cnv = \frac{c}{n}

Substitute the value of cc and the calculated value of nn: v=3×108 m/s62v = \frac{3 \times 10^8 \text{ m/s}}{\frac{\sqrt{6}}{2}} v=2×3×1086 m/sv = \frac{2 \times 3 \times 10^8}{\sqrt{6}} \text{ m/s} v=6×1086 m/sv = \frac{6 \times 10^8}{\sqrt{6}} \text{ m/s}

To rationalize the denominator, multiply the numerator and denominator by 6\sqrt{6}: v=666×108 m/sv = \frac{6 \sqrt{6}}{6} \times 10^8 \text{ m/s} v=6×108 m/sv = \sqrt{6} \times 10^8 \text{ m/s}

Now, calculate the numerical value of 6\sqrt{6}: 62.449\sqrt{6} \approx 2.449

So, v2.449×108 m/sv \approx 2.449 \times 10^8 \text{ m/s}. Rounding to one decimal place, v2.4×108 m/sv \approx 2.4 \times 10^8 \text{ m/s}.

Comparing this with the given options, the closest value is 2.4×108 ms12.4 \times 10^8 \text{ ms}^{-1}.