Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The angle of intersection to the curve y=x2,6y=7x3y = x^2, 6y = 7 - x^3 at (1, 1) is :

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

π3\frac{\pi}{3}

D

π\pi

Answer

π2\frac{\pi}{2}

Explanation

Solution

Let m1m_1 and m2m_2 be slope of curve y=x2y = x^2 and 6y=7x36y = 7 - x^3 respectively. Now, y=x2y = x^2 dydx=2x\Rightarrow \frac{dy}{dx} = 2x (dydx)(1,1)=2\Rightarrow \left(\frac{dy}{dx}\right)_{\left(1,1\right)} = 2 i.e. m1=2m_{1} = 2 and 6y=7x36y=7-x^{3} 6dydx=3x2\Rightarrow 6 \frac{dy}{dx} = -3x^{2} dydx=36x2=12x2\Rightarrow \frac{dy}{dx} = - \frac{3}{6} x^{2} = - \frac{1}{2} x^{2} (dydx)1,1=12(1)2=12\Rightarrow \left(\frac{dy}{dx}\right)_{1,1} = - \frac{1}{2}\left(1\right)^{2} = - \frac{1}{2} m2=12 \therefore m_{2} = - \frac{1}{2} m1m2=2.12=1\therefore m_{1} m_{2} = 2 . - \frac{1}{2} = -1 \therefore Angle of intersection is 9090^{\circ} i.e.π2 \frac{\pi}{2}