Solveeit Logo

Question

Mathematics Question on Approximations

The angle of intersection of the two curves xy=a2xy = a^2 and x2+y2=2a2x^2 + y^2 = 2a^2 is

A

π6\frac {\pi} {6}

B

π4\frac {\pi} {4}

C

π3\frac {\pi} {3}

D

none of these

Answer

none of these

Explanation

Solution

xy=a2xy = a^2 y=a2x\Rightarrow y = \frac{a^{2}}{x} dydx=a2x2\Rightarrow \frac{dy}{dx}=-\frac{a^{2}}{x^{2}} x2+y2=2a2x^{2}+y^{2} = 2a^{2} 2x+2ydydx=0\Rightarrow 2x + 2y \frac{dy}{dx}=0 dydx=xy\Rightarrow \frac{dy}{dx}=-\frac{x}{y}. Let (x1,y1)\left(x_{1}, y_{1}\right) be the pt. of intersection of the curves. (dydx)\left(\frac{dy}{dx}\right) at (x1,y1)\left(x_{1}, y_{1}\right) for first curve =a2x12= - \frac{a^{2}}{x^{2}_{1}} and for second =x1y1= - \frac{x_{1}}{y_{1}}. Now x12+y12=2a2,x1y1=a2x^{2}_{1} + y^{2}_{1} = 2a^{2}, x_{1}y_{1} = a^{2} (x12y12)2=(x12y12)24x12y12\Rightarrow \left(x^{2}_{1}-y^{2}_{1}\right)^{2}=\left(x^{2}_{1}-y^{2}_{1}\right)^{2}-4\,x^{2}_{1}y^{2}_{1} =4a44a4=0= 4a^{4} - 4a^{4} = 0 x12=y12\Rightarrow x^{2}_{1}=y^{2}_{1} But x12+y12=2a2x^{2}_{1}+y^{2}_{1}=2a^{2} 2x12=2a2\Rightarrow 2\,x^{2}_{1} = 2a^{2} x12=a2\Rightarrow x^{2}_{1} = a^{2} y12=a2\Rightarrow y^{2}_{1} = a^{2} x1=y1=a\therefore x_{1} = y_{1} = a \therefore slopes of the two curves at (x1,y1)\left(x_{1}, y_{1}\right) are equal and is 1- 1. \therefore angle =π= \pi