Solveeit Logo

Question

Mathematics Question on circle

The angle of intersection of the circles x2+y2x+y8=0x^{2}+y^{2}-x+y-8=0 and x2+y2+2x+2y11=0x^{2}+y^{2}+2 x+2 y-11=0 is

A

tan1(199)tan^{-1} \left(\frac{19}{9}\right)

B

tan1(19)tan^{-1} \left(19\right)

C

tan1(919)tan^{-1} \left(\frac{9}{19}\right)

D

tan1(9)tan^{-1} \left(9\right)

Answer

tan1(919)tan^{-1} \left(\frac{9}{19}\right)

Explanation

Solution

We know that, angle of intersection between two circles is given by
cosθ=r12+r22d22r1r2=172+13104217213\cos \theta=\frac{r_{1}^{2}+r_{2}^{2}-d^{2}}{2 r_{1} r_{2}}=\frac{\frac{17}{2}+13-\frac{10}{4}}{2 \sqrt{\frac{17}{2}} \cdot \sqrt{13}}

cosθ=(19442)\Rightarrow \cos \theta=\left(\frac{19}{\sqrt{442}}\right)
or tanθ=(919)\tan \theta=\left(\frac{9}{19}\right)
θ=tan1(919)\Rightarrow \theta=\tan ^{-1}\left(\frac{9}{19}\right)